
Ville Timonen

Scalable Algorithms for
Height Field Illumination

TUCS Dissertations
No 173, April 2014

Scalable Algorithms for Height Field
Illumination

Ville Timonen

To be presented, with the permission of the Department of Information
Technologies at Åbo Akademi University, for public criticism in

Auditorium Lambda on April 11, 2014, at 12 noon.

Åbo Akademi University
Department of Information Technologies

Joukahaisenkatu 3-5 A, 20520 Turku

2014

Supervisors

Jan Westerholm
Department of Information Technologies
Åbo Akademi University
Joukahaisenkatu 3-5 A, 20520 Turku
Finland

Jukka Arvo
Unity Technologies
Vendersgade 28, DK-1363 Copenhagen
Denmark

Reviewers

Elmar Eisemann
Department of Intelligent Systems
Delft University of Technology
Mekelweg 4, 2628 CD, Delft
Netherlands

Ulf Assarsson
Department of Computer Science and Engineering
Chalmers University of Technology
S-412 96, Gothenburg
Sweden

Opponent

Ulf Assarsson
Department of Computer Science and Engineering
Chalmers University of Technology
S-412 96, Gothenburg
Sweden

ISBN 978-952-12-3036-3
ISSN 1239-1883

Abstract

Global illumination algorithms are at the center of realistic image synthesis
and account for non-trivial light transport and occlusion within scenes, such
as indirect illumination, ambient occlusion, and environment lighting. Their
computationally most difficult part is determining light source visibility at
each visible scene point. Height fields, on the other hand, constitute an
important special case of geometry and are mainly used to describe certain
types of objects such as terrains and to map detailed geometry onto object
surfaces. The geometry of an entire scene can also be approximated by
treating the distance values of its camera projection as a screen-space height
field.

In order to shadow height fields from environment lights a horizon map
is usually used to occlude incident light. We reduce the per-receiver time
complexity of generating the horizon map on N × N height fields from
O(N) of the previous work to O(1) by using an algorithm that incrementally
traverses the height field and reuses the information already gathered along
the path of traversal. We also propose an accurate method to integrate
the incident light within the limits given by the horizon map. Indirect
illumination in height fields requires information about which other points
are visible to each height field point. We present an algorithm to determine
this intervisibility in a time complexity that matches the space complexity of
the produced visibility information, which is in contrast to previous methods
which scale in the height field size. As a result the amount of computation
is reduced by two orders of magnitude in common use cases.

Screen-space ambient obscurance methods approximate ambient obscu-
rance from the depth buffer geometry and have been widely adopted by con-
temporary real-time applications. They work by sampling the screen-space
geometry around each receiver point but have been previously limited to
near-field effects because sampling a large radius quickly exceeds the render
time budget. We present an algorithm that reduces the quadratic per-pixel
complexity of previous methods to a linear complexity by line sweeping over
the depth buffer and maintaining an internal representation of the processed
geometry from which occluders can be efficiently queried. Another algorithm
is presented to determine ambient obscurance from the entire depth buffer at
each screen pixel. The algorithm scans the depth buffer in a quick pre-pass
and locates important features in it, which are then used to evaluate the am-
bient obscurance integral accurately. We also propose an evaluation of the
integral such that results within a few percent of the ray traced screen-space
reference are obtained at real-time render times.

i

Sammanfattning

Globala belysningsalgoritmer beskriver hur ljuset framskrider bland dator-
genererade objekt i en scen, omfattande bland annat indirekt belysning,
skuggor, blockering av ambient ljus samt belysning fr̊an omgivningen. Dessa
algoritmer spelar en central roll d̊a man önskar generera realistiska syntetiska
bilder. Den beräkningsmässigt tyngsta delen i dessa algoritmer best̊ar av att
man skilt för varje synlig punkt i scenen m̊aste avgöra om en ljuskälla är
synlig i denna punkt eller inte. Höjdkartor utgör å andra sidan ett viktigt
specialfall av geometrier som huvudsakligen används för att beskriva vissa
typer av objekt s̊asom terräng eller för att avbilda detaljerade ytor p̊a ob-
jekt. Geometrin för en hel scen kan ocks̊a approximeras genom att behandla
avst̊anden inom kameraprojektionen som en höjdkarta i skärmrummet.

För att beräkna skuggor i höjdkartor använder man ofta en horisontsil-
huett för att blockera inkommande direkt ljus. I detta arbete minskar vi
komplexiteten för att beräkna horisontsilhuetten per mottagande punkt i en
höjdkarta med dimensionen N × N fr̊an O(N) i tidigare arbeten till O(1)
genom att utnyttja en algoritm som g̊ar igenom höjdkartan inkrementellt
längs en linje och återanvänder den redan insamlade informationen längs
linjen. Vi försl̊ar ocks̊a en exakt metod för att integrera den inkommande
belysningen för horisontsilhuetter. Den indirekta belysningen i höjdkartor
kräver information om vilka punkter i höjdkartan som syns fr̊an en given
punkt. Vi presenterar en algoritm för att bestämma denna intervisibilitet
med en tidskomplexitet som sammanfaller med rumskomplexiteten för vis-
ibilitetsinformationen, i kontrast till tidigare metoder vars tidskomplexitet
växer enligt antaler punkter i höjdkartan. Detta resulterar i att mängden
beräkningar i normala tillämpningar minskar hundrafalt.

Kända metoder för att beräkna ambient blockering i skärmrummet ap-
proximerar skuggningen fr̊an djupkartans geometri och de används allmänt
inom moderna realtidstillämpningar. Metoderna baserar sig p̊a att sam-
pla skärmrummets geometri runt varje mottagarpunkt men de har hittills
begränsats till näromr̊aden eftersom sampling fr̊an större omr̊aden snabbt
blir för tidskrävande. Vi presenterar en algoritm som minskar den kvadratiska
tidskomplexiteten per punkt hos tidigare metoder till en linjär tidskomplex-
itet genom att g̊a över djupkartan längs räta linjer och upprätth̊alla en intern
representation av den redan behandlade geometrin ur vilken blockerande ge-
ometri kan bestämmas effektivt. Vi presenterar ocks̊a en algoritm för att
beräkna ambient blockering fr̊an hela djupkartan i varje skärmpunkt. Denna
algoritm g̊ar igenom djupkartan via en snabb förbehandling som identifierar
viktiga drag i djupkartan, och dessa drag används sedan för att beräkna den

ii

ambienta blockeringens integral exakt. Vi framlägger ocks̊a en metod att
beräkna integralen i realtid vars resultat sammanfaller med n̊agra procents
noggrannhet med resultaten fr̊an den kända str̊alg̊angsmetoden tillämpad
p̊a skärmrummet.

iii

iv

Acknowledgements

First and foremost I would like to express my gratitude to my thesis super-
visor Prof. Jan Westerholm for teaching me academic discourse and for his
inspiring support. I would like to thank Dr. Jukka Arvo for helping me with
the manuscripts and Prof. Elmar Eisemann and Assoc. Prof. Ulf Assarsson
for reviewing this thesis and for providing me with positive and constructive
feedback. I would also like to extend my thanks to Dr. Samuli Laine for
helping me with the final list of reviewers.

Finally I am grateful to my family for their reassuring support and I
would like to thank my friends and #muropaketti for their encouragement
during my studies.

v

vi

List of original publications

[P1] Ville Timonen and Jan Westerholm. Scalable Height Field Self-Shad-
owing. Computer Graphics Forum, 29(2), pages 723–731, 2010. Euro-
graphics Conference 2010. 3rd Best Paper.

[P2] Ville Timonen. Low-Complexity Intervisibility in Height Fields. Com-
puter Graphics Forum, 31(8), pages 2348–2362, 2012. Invited to Eu-
rographics Conference 2013.

[P3] Ville Timonen. Line-Sweep Ambient Obscurance. Computer Graph-
ics Forum, 32(4), pages 97–105, 2013. Eurographics Symposium on
Rendering 2013. Best Student Paper.

[P4] Ville Timonen. Screen-Space Far-Field Ambient Obscurance. In Pro-
ceedings of the High Performance Graphics 2013, pages 33–43, ACM.

vii

viii

List of abbreviations

2D Two-dimensional
3D Three-dimensional
CPU Central processing unit
GPU Graphics processing unit
GPGPU General-purpose computing on graphics processing units
GI Global illumination
AO Ambient obscurance
SSAO Screen-space ambient obscurance
HBAO Horizon-based ambient occlusion

ix

x

Contents

I Research summary 1

1 Introduction 3

1.1 Global illumination . 5

1.2 Ambient occlusion . 8

1.3 Height fields as geometry . 9

1.4 General-purpose computation on GPUs 12

1.5 Our contribution . 13

2 Previous work 17

2.1 Visibility . 17

2.2 Height field visibility . 19

2.2.1 Horizon mapping . 19

2.2.2 Multi-resolution approaches 20

2.2.3 Intervisibility . 21

2.3 Ambient obscurance . 22

2.4 Screen-space ambient obscurance 23

3 Height field visibility 27

3.1 Computational complexity . 27

3.2 Height field traversal . 28

3.3 Horizon map computation . 29

3.4 Intervisibility computation . 30

3.5 Results . 31

4 Screen-space ambient obscurance 37

4.1 Line-Sweep Ambient Obscurance 37

4.2 Far-Field Screen-Space Ambient Obscurance 38

4.3 Results . 39

5 Conclusion and future work 45

5.1 Conclusion . 45

5.2 Future work . 46

xi

II Original publications 55

A Algorithm listings 113
A.1 Horizon map computation . 113
A.2 Intervisibility computation . 115

xii

Part I

Research summary

1

Chapter 1

Introduction

Computer graphics as a field of computer science, and in particular ren-
dering, is about image synthesis—creating images using computers. These
computer generated images (CGI) are commonplace in our lives: Most fea-
tures films today incorporate CGI effects as parts of scenes or have entire
scenes digitally rendered; video games on smartphones, gaming consoles,
and personal computers boast increasingly realistic graphics; visualization
of medical and scientific data and complex datasets is important as the
human brain is adjusted to understanding data through visualization; ar-
chitecture and interior design require physically accurate visual previewing;
and even still images found in magazines and newspapers are often rendered
or manipulated digitally. New fields that increase in popularity, such as vir-
tual and augmented reality, also depend heavily on high quality rendering
to make the user experience plausible. And the future will most probably
see many new applications of computer graphics.

The main challenges in computer graphics have been in photorealistic
rendering where the goal is to is to synthesize graphics that are indistin-
guishable from the real world. Photorealistic rendering is important for
feature films and video games as their immersiveness depends on plausibly
convincing the user that the created environment could be real. An even
higher level of realism is required for computer-aided architecture and in-
terior design because the pre-visualization needs not only be plausible, but
also physically correct to accurately represent the actual deliverable. The
same requirements also apply, to some extent, to augmented reality type ap-
plications where one places virtual objects, such as furniture, into an image
of a real scene. The appearance of the virtual objects needs to adjust to the
environment in a physically correct fashion.

Photorealistic rendering involves modeling at least the geometry of the
rendered objects, the material of the object surfaces, and light sources. After
light has been emitted by the light sources, it is transported and bounces

3

around in the scene before finally reaching the eye and forming an image.
Upon contact with an object, the object’s surface properties define how
the light is modulated before being transmitted forward. As a function
of wavelength (i.e. color of the light), light can be absorbed, reflected, or
refracted. Although many more seemingly distinct effects of illumination
can be observed in real life, they are for the most part result of these three
basic building blocks. While there are other optical phenomena—such as
diffraction, Rayleigh scattering, and quantum effects—they do not play a
large role in how the everyday world looks like apart from special situations.
Therefore the behavior of light is very well understood.

However, synthesizing photorealistic scenes is far from a solved problem
for the simple reason that an accurate simulation of light is computation-
ally extremely complex. For example, rendering a single frame in a feature
film may take up to a day on one computer, and still several levels of ap-
proximations for speeding up rendering have to be made, such as tailored
algorithms and simplified models for surface materials and object geometry.
The amount of computation required per frame is also steadily increasing
because still not all artistic visions can be realized: there is a demand for
larger scenes, higher detail, and more exotic environments.

Real-time and interactive applications are much more computationally
constrained as up to 60 images have to be rendered each second on commod-
ity hardware. Therefore, there is a lot of work left to be done in the field of
computer graphics. Currently, one major part in rendering research is to de-
termine fast and robust methods to simulate light transport throughout the
scene. In order to determine the appearance of a point in a scene, incoming
light from primary light sources (direct illumination) and reflected and re-
fracted light from other objects (indirect illumination) has to be accounted
for. Global illumination (GI) [23] is the term used to describe a system that
attempts to account for the full scene lighting, or at the very least both
direct and reflected indirect light. The most computationally complex part
in global illumination is visibility determination of both the primary light
sources and other objects in the scene.

This work, overviewed at the end of this chapter in Section 1.5 and
presented in more detail in Chapters 3 and 4, contributes to efficient and
scalable visibility and illumination algorithms for height field and screen-
space geometry. This geometry is described and defined in Section 1.3.
An introduction to global illumination is given in Section 1.1 followed by
a focused introduction to one GI effect in particular: ambient occlusion in
Section 1.2. General-purpose languages for GPUs have allowed an efficient
implementation of our algorithms and these are described in Section 1.4.
Chapter 5 concludes this thesis with a summary and a discussion about
future work.

4

1.1 Global illumination

As described in the previous section, upon contact with a surface light can be
absorbed, reflected, or refracted. While the interaction might sound simple,
complex illumination effects emerge. The basic reflection effects include hard
shadows, which appear when a surface is not in direct view of a point light
source, and soft shadows, which appear when a surface is partially visible
from an area light source. Scattering effects such as crepuscular rays and
subsurface scattering occur when an otherwise transparent volume, such as
air, is occupied by tiny reflective particles which cause light to unpredictably
change direction and eventually end up in the eye even if the light source is
not directly visible.

Practical objects are never fully absorptive but instead always reflect
some light. Therefore objects themselves become light sources when struck
by light. This type of light is called secondary or indirect light, and reflection
effects for this type of light include ambient and indirect illumination (from
diffuse surfaces) and reflections (from glossy surfaces). Sometimes indirect
illumination is further divided into global effects and local effects such as
color bleeding.

Refraction changes the direction of light, and refraction effects include
morphing of the view as seen through a medium with changes in its optical
density. This effect can be seen for instance in glassware, water, and hot air
leaving the surface of a highway. Another type of refraction effects are caus-
tics which is the focusing of light that passes through an optically varying
object, such as a glass, into patterns on a surface.

Using a single rendering strategy to simulate light transport with high
enough fidelity such that all of the above illumination effects can be faith-
fully produced, would currently be computationally too expensive. There-
fore, different rendering methods are generally used to approximate different
illumination effects, especially in real-time applications where each render-
ing method is strongly tailored to reproduce a small subset of illumination
effects due to strict execution time constraints.

In this thesis, we focus on direct and indirect reflected illumination on
solid—mostly diffuse—objects. This type of light constitutes the significant
majority of the visible world and is therefore very important to solve accu-
rately. Shadowing of direct light is important for creating scenes that look
realistic and to convey the shape, location, and movement of objects [88]
[44] [51]. Specifically, hard shadows convey the shape of an object whereas
soft shadows [34] convey distance: the shadow from an area light source
gradually spreads and softens as the distance from the caster to the receiver
increases. Shadows also convey information about the environment: where
the light sources are located and how large and intensive they are. Indi-
rect illumination further adds to realism, without which scenes often look

5

artificial or dull. It also allows shadowed parts of the scene to be lit that
otherwise would be dark. Indirect illumination also conveys information
about the neighborhood of a given point indicating whether it is mostly
occluded by nearby objects or in the open. Figure 1.1 demonstrates direct
and indirect illumination on a height field lit by a point light source.

Figure 1.1: Left: direct illumination from a point light source on a 10242

diffuse height field rendered using the algorithm in [P1]. Right: an additional
indirect light bounce rendered using the algorithm in [P2].

Most illumination effects can be described using a 2-dimensional integral
at the receiver point. This integral is called the rendering equation [40] and
it describes how a point looks like when viewed from a given direction ωo.
The equation accounts for light reflected from and emitted by the surface
point x with a normal ~n as a function of the wavelength of light λ:

Lo(x, ~n, ωo, λ) = Le(x, ωo, λ) +

∫

Ω
Li(x, ωi, λ)fr(x, ωi, ωo)(~n · ωi)dωi, (1.1)

where Le is the emitted radiance of point x, Ω is the normal-oriented unit
hemisphere around x, Li is the incident light at point x from direction ωi

and fr is the bi-directional reflectance distribution function (BRDF). BRDF
describes how the surface reflects light coming from direction ωi into the
viewing direction ωo. For perfectly diffuse surfaces the value of BRDF is
constant as a function of λ. This formulation is very useful because it
implies a straight-forward way to solve a point’s appearance: The integral
can be numerically evaluated by casting rays from the receiver point x in
the direction ωi and finding the nearest intersection of this ray with the
scene geometry—or a light source—and sampling the emitted radiance at the
intersection point. This approach is called path tracing and it was published
simultaneously with the rendering equation in [40]. Visibility determination,
i.e. determining which point is the nearest along the ray direction is the
most computationally challenging part of the evaluation of the rendering
equation.

6

When only direct light is accounted for, it is not necessary to integrate
across the full hemisphere but only solve the visibility of the light sources.
The simplest and easiest case of this type is the point light source, where
one visibility query is sufficient. Area light sources can be partially visible
and require a more exhaustive visibility search to determine the visible area
of the light source. As the most general case direct light can also be inte-
grated from an environment light map where the incident light is defined as
a function of direction. Obtaining the integration limits for this integral re-
quires determining the full visibility of the environment, making it the most
computationally difficult form of direct lighting. In case the geometry can
be expressed as a height field, visibility can be described as a horizon map.
A horizon map stores the horizon angle as a function of azimuthal direction
for each height field point. In order to generate this data previous state-
of-the-art methods require, at each height field point, an exhaustive search
that is dependent on the height field size. In [P1] we propose a method to
generate the horizon map in constant time at each receiver point, regardless
of the size of the height field.

For perfectly diffuse surfaces, Equation 1.1 can alternatively be written
as:

Lo(x, λ) = Le(x, λ) + fr(x, λ)

∫

S
Lo(x

′, λ)G(x,x′)V (x,x′)dA′ (1.2)

where instead of integrating over the hemisphere at each point, the integral
is taken over all scene surfaces A′ and the binary visibility function V de-
termines whether the surface point x′ is visible to x or not. This integral
can be numerically evaluated by dividing the scene surfaces into finite size
patches and iterating over the patches and weighing them according to their
size as seen from the receiver point according to the geometrical form factor
G. When each patch is considered as a receiver and the incoming radiance
is assumed to be transferred uniformly in every direction (which is to say
that surfaces are assumed to be perfectly diffuse), the approach is called
radiosity [30]. The significant downside of this approach is that all surface
patches are traversed through instead of only the visible ones. We show in
[P2] that for height fields, on average, only a small fraction of geometry is
generally visible. Furthermore visibility scales strikingly sublinearly when
the geometry is expanded. The method we propose in [P2] improves the
previous state-of-the-art, where all height field points need to be traversed
to find the visible ones, by allowing to traverse only the visible parts of
the height field, which reduces the amount of computation required by two
orders of magnitude in common use cases.

7

1.2 Ambient occlusion

There is one method relevant to our work which tries to simulate an impor-
tant subset of the difficult-to-calculate indirect diffuse illumination effects:
ambient occlusion. Ambient occlusion assumes that there is a uniform envi-
ronment light source in the scene, and blocks the light reaching the receiving
point by considering the surrounding scene geometry.

The strong visual cues about the shape and surroundings of an object
that arise from ambient lighting were first noted by [49]. Then a few years
later obscuring ambient light was used as a shading method to render com-
puter graphics in [92]. Ambient obscurance generalizes ambient occlusion by
introducing a falloff function ρ(d) which weighs occlusion according to the
distance d to the occluding geometry. The idea is to diminish the amount
of occlusion that an occluder casts when it is farther from the receiver,
which simulates the behavior of indirect light. Therefore the falloff func-
tion is a monotonically decreasing function and it generally applies that
ρ(0) = 1, ρ(∞) = 0. Additionally, the falloff function takes care of an issue
when ambient occlusion is applied to indoor scenes: Unless a falloff function
is used, indoor scenes appear pitch black as generally every direction from a
receiver is blocked by some geometry. In terms of the rendering equation Eq.
1.1, ambient obscurance AO integrates over the hemisphere of the receiver
and weighs the integral with the falloff function and the geometric term:

AO(x, ~n) = 1− 1

π

∫

Ω
ρ(D(x, ω))(~n · ω)dω (1.3)

where D returns the distance to the nearest geometry in direction ω from
the receiver x. It should be noted that if the scene is assumed to be evenly
populated by “light emitting fog”, the falloff function ρ becomes an inverse
exponential function, and 1.3 becomes an accurate description of direct il-
lumination from this lit fog.

However, ambient obscurance is most often used in conjunction with a
direct illumination method to approximate indirect lighting, and the falloff
function is empirically selected to convey a plausible global illumination
look. Ambient obscurance is not physically based as it does not sample
actual surface illumination from the blocking geometry, and it ignores sur-
face properties such as glossiness and varying reflectivity. Despite of AO
not being physically based, it has become extremely popular in feature film
effects and computer games because it produces visually plausible results
but executes significantly faster than physically accurate solutions such as
radiosity or recursive path tracing. Figure 1.2 shows the ambient occlusion
component in a patio scene. Applications where physical accuracy is of ut-
most importance, such as architectural visualization, ambient occlusion or
obscurance is not the best option as its results generally do not converge to

8

Figure 1.2: Ambient occlusion in the San Miguel scene, courtesy of
Guillermo M. Leal Llaguno, rendered by the Blender renderer [27] in 65
seconds.

what is seen in reality.

AO has the additional benefit that it is not dependent on light sources
or other illumination methods which makes it very easy to integrate into a
renderer, and it can be used in previsualization situations where light sources
are not yet present. The occlusion of ambient light is also a purely geometric
property of a receiver point, and it does not need to be recomputed when
light sources or materials change while geometry does not. Additionally, the
obscurance effect is often limited to a certain neighborhood dmax around
the receiver pixel by having ρ(d) = 0, d > dmax, which also makes ambient
obscurance evaluation computationally cheaper as not all scene geometry
has to be considered for each receiver.

1.3 Height fields as geometry

Height fields constitute an important special case of geometry. They are
scalar functions on a plane, and define a surface of points P = (x, y,HF (x, y))
where HF (x, y) is the function returning the height at surface coordinate
(x, y). The main limitation of height fields as geometry is that one sur-
face coordinate cannot have more than one defining point. It is possible to
classify objects that can be described fully using a height field as follows:
When the object is projected onto a 2-dimensional plane, there can only
be at most one surface point in the object that maps to each point on the
projection plane. The simplest case that does not meet this requirement is
a solid object that has different front and back surfaces with respect to any

9

viewing direction. It is possible, however, to represent arbitrary objects by
multi-layer height fields [65] where multiple height fields are stacked on top
of each other.

From now on we assume height fields to be defined at x ∈ [0,W [, y ∈
[0, H[discrete coordinates on a regular grid. We also assume height fields to
be linearly continuous between height field points, roughly as if the W ×H
grid was split into W ·H ·2 triangles whose Z coordinate is displaced accord-
ing to HF (x, y). As no explicit information is available on how the surface
should behave between the discrete coordinates, the linearity assumption is
practical and maps efficiently to current GPU features and it is therefore
usually made in graphics applications. It should be noted that this type
of a height field can be trivially turned into a triangle mesh, and therefore
algorithms that work on arbitrary triangle meshes can be used on them as
well. The main benefit of algorithms tailored for height fields is that they are
faster and sometimes of significantly lower time complexity than methods
for generic geometry.

Height fields are a simple geometry representation that can be obtained
by scanning real life objects or by “painting” onto an image using image
manipulation tools. GPUs are efficient at handling height fields because
they can be stored as a 2D texture for which dedicated sampling and caching
hardware exists in virtually every GPU architecture. In computer graphics,
height fields are most often used as follows:

• to represent standalone objects such as terrains (Figure 1.3, right)

• to describe micro-geometry on top of larger scale polygons by using a
displacement texture (Figure 1.3, left), and

• as an approximation for scene geometry by treating the depth buffer
as an inverse height map (Figure 1.4).

Displacement textures can be used by displacement mapping techniques [81]
whereby new triangles are generated from the height data, or by relief map-
ping techniques [84] where only one polygon is rendered and the visible point
is searched by ray marching in the fragment shader.

The third use case has gained widespread popularity in real-time ap-
plications recently, especially by screen-space ambient occlusion and obscu-
rance (SSAO) methods which determine ambient occlusion from the depth
buffer geometry. As most real-time renderers sort fragments according to
their depth by updating and testing against a depth buffer, depth buffers
are readily available as a by-product of the rendering pipeline. GPUs are
extremely efficient at rasterizing a scene into a depth buffer, whereas clas-
sic meshing is complex and error-prone. The depth buffer also inherently
adapts the level of detail to the relevant parts of the scene. The downside

10

Figure 1.3: Left: a height field representing a brick surface. Right: a height
field representing a fractal terrain. Images are rendered using the methods
proposed by [P1] and [P2].

is that the depth buffer is not a complete description of the scene geometry.
Specifically, geometry behind the first depth layer (due to occlusion) and
geometry outside the view frustum (due to clipping) is unknown. Figure 1.4
shows an example SSAO rendering.

Figure 1.4: Screen-space ambient obscurance rendered for a model of the
the Šibenik Cathedral, courtesy of Marko Dabrovic, by our method [P4] in
under 5 ms.

Height fields have many uses beyond graphics as well, mainly because
relief maps are usually a sufficient description for a terrain. For exam-
ple, height field algorithms are used for siting problems [28], finding good-
coverage locations for radio towers, missile defense systems [29], et cetera.
They can also be used to plan routes for camera-equipped vehicles such as
Mars rovers [71]. Nagy [59] gives a review of non-CG-related height field
algorithms and their applications.

11

1.4 General-purpose computation on GPUs

Most real-time applications use a graphics library to employ the compu-
tational power of GPUs. Two graphics libraries dominate today: Khronos
Group’s OpenGL [73] and Microsoft’s DirectX [31]. They allow the program-
mer to replace only certain parts of the pipeline by user-specified programs.
These parts include, for example; vertex shaders which transform vertices
from one coordinate system to another; fragment shaders which define the
final color value of a pixel or a fragment; geometry shaders which modify
geometric primitives; and tessellation shaders that specialize in efficiently
generating new geometry. Parts of the graphics pipeline therefore remain
non-programmable (fixed-function) and are carefully optimized by the GPU
vendors into device drivers. Also, some computational features that are
found in the hardware are restricted in the user-programmable shaders be-
cause not all GPU architectures support them and graphics libraries are
intended to be as portable as possible. Additionally, some functionality
which the hardware is technically capable of is prohibited because GPUs
are generally not optimized for them. One example for this are scatter
writes.

GPUs are a specialized processor architecture that is very efficient at
highly data-parallel tasks, and therefore many non-graphics applications
such as physics simulations are taking advantage of them as well. As general-
purpose programming on GPUs gained popularity and GPU architectures
became increasingly programmable, languages for general purpose compu-
tation on graphics processing units (GPGPU) started to emerge, which
dropped most of the unnecessary graphics abstractions and allowed a more
transparent access to hardware. Prior to GPGPU languages this was done
by mapping generic programs as rendering tasks through the programmable
shaders. The first GPGPU language to become popular was the NVIDIA’s
vendor-specific CUDA [33] and since then the vendor-agnostic OpenCL [32]
from the Khronos Group has also become widely adopted. When GPGPU
languages were introduced they were not only useful for non-graphics ap-
plications: Because they allow a more direct access to graphics hardware,
also some graphics algorithms are now possible to implement on GPUs that
would not otherwise be due to the limitations that the shaders impose. On
the other hand, the restrictions in shaders of graphics libraries take care of
many aspects that are crucial for performance, such as coalesced writes and
efficient scheduling, which the developer becomes responsible for in GPGPU
languages. When using a GPGPU language the developer has to adhere to
careful code and memory access guidelines to maintain good performance.

As algorithms in this thesis have phases that do not map to tradi-
tional rasterization used by graphics libraries and therefore exhibit what
the shaders classify as scatter writes, we, too, rely on GPGPU languages:

12

papers [P1] and [P2] are partially implemented in CUDA and papers [P3]
and [P4] are implemented entirely in both OpenCL and CUDA. Addition-
ally, some phases in our algorithms can be accelerated by using the direct
access to the on-chip shared memory [91] (NVIDIA) or the equivalent local
data share [1] (AMD) that is exposed by GPGPU languages but unavailable
in shaders.

It is very important to note that during the development of the algo-
rithms presented in this thesis, compute shaders were introduced to both
DirectX [8] and OpenGL [74] which allow GPGPU programs to be executed
in the graphics libraries. Therefore all of our algorithms can be entirely im-
plemented in both OpenGL and DirectX as of 2012. CUDA, being specific
to NVIDIA hardware, still offers some minor performance advantages on
their hardware, such as the ability to control the shared memory-L1 split
and access to NVIDIA specific instructions such as vote functions. Our algo-
rithms make use of these features when they are available. Generally, GPU
architectures are well suited to handle height field geometry because height
fields can be expressed as floating point textures for which efficient sampling
and filtering functionalities exist in current hardware.

Any microchip design is constrained by transistor, heat, and power bud-
gets and increasing resources somewhere has to be offset by compromising
elsewhere. Despite of this, there are some bottlenecks in current GPU archi-
tectures for our algorithms, and a different resource balance would further
improve the performance of our implementations. Namely, [P1], [P2], and
[P3] all suffer from load imbalance as our implementations due to dynamic
branching leave, on average, a significant portion of the single instruction
multiple thread (SIMT) lanes idling. Battling this with a software load
balancer, on the other hand, becomes easily very costly due to the extra in-
struction overhead. Therefore allocating some transistors to hardware load
balancing features would likely improve the overall efficiency of our algo-
rithms. Additionally, the algorithm in [P2] uses a relatively large data set
per thread, and larger on-chip caches would cause less DRAM traffic which
is currently the limiting factor.

1.5 Our contribution

Our publications target height field and screen-space geometry and are
aimed to be used on dynamic geometry where computational efficiency is a
key. We use the concept of time complexity [75], denoted by the complexity
notation O(), to characterize the scaling of our algorithms. Time complex-
ity essentially tells how much work is required, i.e. how many algorithm
iterations needs to be taken, to solve a problem with respect to the input
size which in our case is the amount of height field geometry. For example,

13

an algorithm with a time complexity of O(N2) performs four times the work
when the input size is doubled, or a hundred times the work when the input
is increased by ten-fold. Our algorithms are scalable, by which we mean
that they show lower time complexity than previous work and scale well in
the height field size allowing for accurate illumination effects to be produced
on very large height fields. In practice, this scalability also shows as short
execution times in common height field sizes. Our algorithms also scale well
with respect to image quality: they allow high quality effects to span the
entire height field unlike previous methods which are limited to short-range
effects or low-quality long-range effects.

The method proposed in [P1] reduces the time complexity for generating
a horizon map, i.e. determining visibility of a light environment from each
height field point. Previous work takes O(N) time per height field point
on N2 height fields, whereas our method produces the same results in an
amortized O(1) time per point by incrementally traversing the height field.
A method to accurately and efficiently integrate Equation 1.1 over the visible
light environment on diffuse surfaces is also proposed in [P1].

In [P2] a method is proposed for reducing the time complexity for de-
termining intervisibility in a height field, which is necessary for accurate
indirect illumination. Our algorithm scales in the actual visibility for each
height field point and not in the entire height field size as previous methods.
We show that visibility scales strongly sublinearly in the height field size
and therefore our method reaches substantial savings in the number of al-
gorithm iterations—two orders of magnitude in common use cases. For the
10242 height fields shown in Figure 1.3, we measure the percentage of the
average number of iterations in our algorithm as compared to the previous
work to be 0.99 % for the brick surface and 2.4 % for the fractal terrain.

Publications [P3] and [P4] contribute to screen-space ambient obscurance
(SSAO) family of real-time rendering methods. In [P3] the time complexity
for approximate SSAO evaluation is reduced by using an approach similar
to [P1] and issues are solved in sampling and AO evaluation that are specific
to SSAO. An SSAO algorithm for rendering very high quality AO effects is
proposed in [P4]. This is achieved by extracting samples from the depth
field that are tailored to capture features that are important for AO. The
sampling technique achieves results that show an order of magnitude smaller
error than previous work. A strategy for integrating Equation 1.3 accurately
and efficiently is also proposed in [P4]. These two contributions together
allow real-time rendering of SSAO effects that are within a few percent of a
ray traced screen-space reference result, only much faster.

14

Author’s contribution: In the presented publications the author devel-
oped the ideas and the resulting algorithms and carried out their implemen-
tation and optimization. Analysis of the methods and the content of the
papers were also produced by the author. Prof. Jan Westerholm helped in
refining the manuscripts, especially [P1], to meet academic standards.

15

16

Chapter 2

Previous work

In this chapter we present prior work most relevant to ours with a focus
on height field methods used in illumination algorithms. Before the height
field methods we briefly cover the main visibility and ambient obscurance
strategies for generic geometries in Sections 2.1 and 2.3 and show how these
are less efficient than the height field specific methods. Height field visibility
and screen-space ambient obscurance methods are then covered in detail in
Sections 2.2 and 2.4.

2.1 Visibility

In non-real-time graphics, where high quality renderings are preferred over
fast execution, the two main branches for solving visibility are based on path
tracing [40] and radiosity [30]. Path tracing evaluates visibility according
to Equation 1.1 by shooting rays into the scene from each receiver. The
rays are traced to their first intersection with the scene geometry in order
to determine intervisibility and produce indirect lighting effects. When pro-
ducing direct lighting effects, it is necessary to query whether the ray hits
any given light source instead. In case the direct light source is modeled as a
light environment, it is sufficient to query whether any geometry exists along
the ray path. When the incident light is roughly uniform like in the case
of ambient obscurance, a few hundred rays are sufficient to produce results
of adequately low noise. However, when incident light is uneven—as is the
case of generic indirect illumination—thousands of rays need to be traced
to produce good results. These cases can be helped by tracing light addi-
tionally from the light sources into the scene and connecting the paths—a
technique called bi-directional path tracing [46]. Even more difficult light
paths can be traversed efficiently using metropolis light transport [86].

By using hierarchical data structures for the scene geometry the com-
putation of tracing one ray against the scene geometry can be achieved in

17

O(log(M)) time where M is the amount of geometry in the scene. Therefore,
on a W ×H height field, the time complexity of solving intervisibility by ray
tracing for one height field point is O(R · log(W ·H)) where R is the number
of rays traced per pixel. This is significantly higher than the complexity of
our height field specific methods [P1] and [P2]. Additionally, the complexity
of reconstructing the hierarchical data structure for dynamic geometry can
be high [87], which is a step not required by height field methods.

The second main approach to solving intervisibility of arbitrary geom-
etry is radiosity, which solves Equation 1.2 by iterating over the scene in
finite elements. If a W × H sized height field is split into one patch per
height field point, O(W 2 · H2) patch-to-patch operations have to be per-
formed to determine full intervisibility. This, too, has significantly higher
time complexity than our methods. Additionally, the binary visibility term
has to be solved in the radiosity method, which further increases the time
complexity. A common approach is to rasterize a view of the occluders onto
a hemicube [13] or a cubic tetrahedron [6]. Using P rasterized pixels, the
full time complexity for a radiosity method is O(W 2 ·H2 · P).

In [10] a similar approach to radiosity is presented which treats each face
of a polygon mesh as a disk. Visibility is ignored and the contribution of
each disk occluder is accumulated. The resulting over-occlusion is removed
layer by layer by performing incremental passes of the algorithm. The same
approach to visibility is pursued in [18]. Overall, radiosity family methods
are not suitable for dynamic geometry in real-time applications because they
don’t scale beyond a low amount of geometry [67], although they are efficient
for precomputing radiance in diffuse scenes.

Finally, there are global illumination solutions that are not based on
an efficient solution to the visibility problem, but rather simplify either
lighting, occluders, or receivers enough such that the input to the visibility
solver becomes tractably small. These methods include photon mapping [39]
where a finite number of photons are cast from the light sources, and their
intersections with the scene geometry are then stored into a data structure
that is queried when evaluating lighting for a given receiver. Instant radiosity
[43] similarly traces light paths and creates virtual point lights (VPLs) at
light-surface bounces. Indirect lighting can then be rendered by lighting the
scene from the VPLs by using shadow maps [89].

Reflective shadow maps [17] on the other hand store light intensities
into the shadow maps and gather lighting for each receiver by sampling
the shadow map textures. Several other methods reduce illumination to a
relatively small number of virtual point lights, from which gathering be-
comes computationally feasible. In [2], for example, objects are directly
illuminated from an environment light source by collapsing the environ-
ment into a tractable number of light sources and using a fast approximate
soft-shadowing method to generate shadows from them. Additionally the

18

screen-space receivers can be adaptively simplified making interactive global
illumination feasible, as done in [60]. Finally, many methods exist that il-
luminate objects based on precomputed visibility information, such as the
popular precomputed radiance transfer (PRT) [76] method, but as they do
not offer a solution to the visibility determination we do not consider them
any further.

2.2 Height field visibility

2.2.1 Horizon mapping

Most height field methods that compute self-occlusion in order to shadow
the surface from a point, an area, or an environment light source are based
on evaluating a horizon map [52]. For each receiver point, the horizon map
stores the horizon angle as a function of azimuthal direction. The horizon
angle is the angle at which the receiver no longer sees the height field, which
is defined through the point in the full height field that has the highest slope
when measured from the receiver. The horizon map is usually discretized
into a finite number of azimuthal sectors (which we denote by K from now
on), and has been used to self-shadow height mapped surfaces in real-time
in [77] and [63]. These methods do not suggest a way for generating the
horizon map efficiently and are thus aimed for static geometry.

Before our method in [P1], generating the horizon map for dynamic
geometry has been computationally significantly more complex than evalu-
ating lighting from the horizon map, which is an O(K) time operation per
receiver. The approach taken by previous real-time methods is to traverse
the height field from each receiver point along the azimuthal directions by
ray marching. In [83] this approach is implemented in a fragment shader
and illumination from an area light source is determined. Also [5] takes the
same sampling approach until a specified maximum distance from the re-
ceiver. These approaches sample the center line of each azimuthal direction,
which is prone to produce discontinued shadows from thin occluders.

In [80] the highest horizon value is determined out of all points in each
azimuthal sector for each point, trading the discontinuity artifact for over-
shadowing but also making the method biased. Their approach is however
not targeted for real-time evaluation and due to the high execution time
is only suitable for static geometry. Our approach in [P4] also determines
occlusion across the entire azimuthal sector and therefore does not pro-
duce discontinuous shadows, but instead of finding the highest horizon, our
method takes the average and is therefore not biased. Our method is also
significantly faster and allows real-time evaluation.

Finally, there are some height field methods that do not base their vis-
ibility on horizon maps. In [62] the maximal unoccluded cone is found for

19

each height field point and surface normals are bent towards the open area.
This produces approximate self-shadowing under environment lighting and
is fast to evaluate, but is significantly less accurate than horizon map based
methods and cannot produce detailed self-shadowing effects.

2.2.2 Multi-resolution approaches

In order to make the ray marching approach feasible for generating hori-
zon maps for dynamic geometry, a multi-resolution pyramid of the height
data can be generated. Lower resolution levels are then used when sampling
farther from the receiver, allowing the step size to be increased exponen-
tially when traversing farther from the receiver. Assuming N × N height
fields, this reduces the O(K · N) time complexity per height field point to
O(K · log(N)). Having pre-filtered lower resolutions of the height field re-
moves many undersampling artifacts much like mipmapping [90] does and
tri-linear filtering reduces texture aliasing artifacts. However, as visibility
information becomes increasingly less accurate when distance from the re-
ceiver increases, multi-resolution approaches are suitable only for reasonably
soft effects such as low frequency indirect illumination and ambient occlu-
sion; detailed shadows that extend far from the caster, for example, are not
possible. A recent effort to use multi-resolution height fields is presented
in [78] where low-order spherical harmonics are used to soft-shadow height
fields. Their approach achieves interactive and real-time execution times for
moderately sized height fields. In contrast, our method computes accurate
horizon maps in an amortized O(K) time per receiver point, and allows
all-frequency real-time self-shadowing for much larger height fields.

Multi-resolution depth buffers are used in screen-space ambient occlu-
sion and obscurance methods as well: in [4] and [36] SSAO is evaluated on
multiple resolutions of the depth buffer and combined into one full SSAO
result. Mipmaps are also used in [54], but depth buffer values from the base
resolution are used instead of the averaged values, and multiple resolutions
are only utilized to improve texture cache utilization. When using multiple
resolutions one needs to be careful when reconstructing results from different
levels of detail in order to avoid transition artifacts. In [78] oversampling
and B-splines are used to interpolate between different scales, and [36] uses
temporal filtering as a post-process to smooth out flickering.

Mipmaps are also widely used to accelerate indirect illumination effects
in screen-space by approximating far-field effects using lower resolution lev-
els. For instance, [79] extends local indirect color bleeding effects of [68] to
arbitrary distances.

20

2.2.3 Intervisibility

We have now covered methods which calculate the horizon map for a height
field. The horizon map can be used to illuminate a height field from external
direct light. The computationally more difficult problem to horizon mapping
is to calculate intervisibility, i.e. to determine which other height field points
are visible to each height field point. This information is necessary for
producing indirect illumination effects where the height field itself acts as a
light source, and height field points need to know from which other points
they are able to receive light.

Several efficient methods exist to determine visibility of a height field
(the viewshed) from a single point on the height field or slightly above it
[42] [25]. In computer graphics, this information can be used to shadow a
height field from a point light source, or to cull invisible height field regions
to accelerate rendering [14]. Methods have also been developed to determine
visibility of the height field from a line path [16] [26]. This information can
be used to conservatively cull geometry for multiple camera points when
the camera path is known in advance, or to evaluate the coverage that a
transmitter or camera equipped vehicle will cover along its path. Finally,
visibility of a height field can be determined from a region [7]. This al-
lows lazy geometry culling for a camera even when its path is not known
beforehand, but its maximum velocity is known to be bound. Only when
the camera exits the region does the visibility have to be recomputed. A
logical extension for this is the yet harder intervisibility problem, where ex-
act visibility for each height field point individually is calculated. Storage
requirements permitting, intervisibility information can also be used to cull
geometry if the camera position remains sufficiently close to the surface.

Prior to our work, state-of-the-art methods for determining intervisibility
in a height field were based on the same idea as horizon map generation:
from each receiver point, the height field is traversed outwards separately
for each receiver point for the K azimuthal directions [15] [72]. For each
outwards step, the maximum slope from the receiver up till the latest step
is tracked and each time it is exceeded, the height field point at the new step
is known to be visible. This also has the same complexity as the horizon
map generation: for K azimuthal directions O(K ·N) time is spent for each
height field point. Similarly to horizon map generation, this complexity can
be reduced to a logarithmic complexity by multi-resolution approaches if the
limitation to soft effects can be accepted. The multi-resolution approach to
intervisibility is pursued in [61] where real-time performance is achieved for
moderately sized height fields.

Methods that are based on static geometry and precomputed intervisi-
bility also exist. In [35] intervisibility is pre-calculated and coordinates of
the visible points along a small set of directions are stored into a texture

21

for each receiving height field point. However our focus in this thesis is
determining the intervisibility information efficiently enough to be suitable
for use for dynamic geometry, and methods based on precomputed visibility
are out of our scope.

2.3 Ambient obscurance

As described in Section 1.2, ambient occlusion or obscurance (AO) is an
approximation for a subset of global illumination effects that are otherwise
computationally difficult. A precursor to AO was accessibility shading [57]
which fits as large a sphere as possible onto each surface point such that it
does not intersect the surface. The size of the sphere determines the amount
of light that can reach the surface. While this effect is extremely local, it
gives plausible visual cues about the small scale structure of an object.

However, modern AO methods began with Zhukov et al. in 1998 [92]
who formulated AO using the rendering equation. The incident light is re-
placed by a falloff function ρ, which is an empirically selected monotonically
decreasing function of distance to the occluding geometry. AO can be lim-
ited to strictly local effects, by having ρ(d) = 0, d > dmax, and combined
with another far-field method, an approach pursued in e.g. [3]. Ambient oc-
clusion started to become a commercially popular shading method in 2002
when it was introduced in the RenderMan renderer [48] [11] [12] [9] and was
used in two feature films that year. Since then, it has become a de-facto
component in feature film rendering. A thorough survey of AO methods is
given in [56].

AO methods that work on arbitrary geometry meshes have been used
in real-time applications as well, but they generally assume a static scene
geometry or target non-deformable objects. In [10], for example, a disk
occluder is formed from each scene triangle and, in an approach similar
to radiosity, pair-wise occlusion is gathered from them as a pre-pass. The
algorithm needs to be run iteratively to determine visibility. This method
is improved in [37] by gathering occlusion at each screen pixel instead of at
each vertex, and the method is implemented using GPUs. Fast ray tracing
based methods have also been proposed: e.g. [47] employs a hemispherical
rasterization scheme to overcome the over-occlusion problem more efficiently.
However, these methods are still not real-time ready for dynamic geometry
and large scenes.

Inter-object AO is calculated in [45] by precalculating the occlusion cast
by an object as a function of object direction and distance. At runtime,
occlusion from an object is approximated as a spherical cap in the receiver’s
hemisphere. This method is fast but the final occlusion is a very rough
approximation. In [53] AO is computed by expanding each scene triangle

22

into a polygonal volume which is then rasterized efficiently using GPUs
and occlusion from all volumes is accumulated in the framebuffer. Thinly
stacked occluders are prone to cause over-occlusion, which is remedied in [47]
by using a visibility mask on the hemisphere such that multiple occlusions
from the same direction cannot accumulate. When the AO radius is large or
the volumes overlap significantly, this approach requires substantial fillrate
capacity from the graphics hardware and ultimately limits the method’s
suitability to real-time applications.

Methods that work on a 3D voxelization of the scene [64] [69] [66] can
achieve real-time performance in some scenes but are highly sensitive to the
amount of scene geometry, thus making them not scalable enough for large
scenes in real-time applications.

2.4 Screen-space ambient obscurance

Even the fastest AO methods that work on generic geometry are not yet
quite real-time ready for production-sized dynamic scenes. This is where
screen-space AO (SSAO) evaluation is often considered and SSAO methods
are indeed used by most high-end computer games today. SSAO methods
evaluate AO using only the geometry found in the depth buffer, and are
therefore insensitive to scene complexity and work on fully dynamic scenes.
The depth buffer is a readily available by-product of most renderers, and
essentially holds the distance from the camera to the nearest object at each
screen pixel. Evaluating lighting as a separate post-process in the frame-
buffer, after the scene geometry has been rasterized, is a common approach
outside ambient occlusion methods as well, and is referred to as deferred
shading [21].

The idea to evaluate AO by sampling the depth buffer around each re-
ceiving pixel was simultaneously introduced in the industry in the CryEngine
game engine [58] and in the academia [70]. Their approach is very simple:
they sparsely populate a fixed-size 3D sphere volume with sample points
that are tested for occupancy. Each point is projected onto screen-space to
obtain a 2D sampling position where the depth buffer is sampled. If the 3D
sample position is below the sampled depth value, the point is considered to
be occupied by scene geometry and the point is treated as an occluder. The
ratio of occluded points to all sampled points is then used as the amount of
occlusion of the ambient light.

Another option is to take line or area samples around each receiver point
to approximate how much of the sphere’s volume is occluded [50] [41] [82].
While these methods can be fast, they, and the said point sampling methods,
are not correct geometry-wise because they ignore occluder fusion: for each
occluded sample there might be a nearer occluder along the same direction.

23

Only the nearest occluder in each direction, as per Equation 1.3, should be
accounted for and all other occluders in the same direction should be ig-
nored. These methods therefore exhibit occasional over- or under-occlusion,
depending on how algorithm parameters have been tuned. Horizon-based
ambient occlusion (HBAO) [5] [22] solves this problem by finding the largest
horizon along a number of azimuthal directions by ray marching, and as-
sumes geometry below the horizon to be blocked. This approach is geometri-
cally correct but requires more depth buffer samples and thus high execution
times.

Methods presented so far also ignore the falloff function and cut occlu-
sion abruptly after a certain distance. The SSAO quality is further improved
in [5] and [24] by taking the falloff function into account and result in prop-
erly attenuated and smoother occlusion. The falloff radius is still usually
cut after a relatively short distance because larger sampling radii become
prohibitively expensive due to increased sample counts. Unfortunately the
falloff is defined as a function of eye-space distances which, in screen-space,
depend on the camera’s distance to scene geometry and may thus get arbi-
trarily large. Limiting the occlusion effect in screen-space causes objects to
change appearance depending on their distance to the camera, but allowing
arbitrarily large screen-space radii affects performance adversely.

A fundamental limitation to SSAO methods is that the scene geometry in
the depth buffer is incomplete: only the first depth layer is known without
any information what is behind it. This issue is tackled in [4] by taking
multiple depth-peeled layers into account. This approach works in some
scenes but fails in situations where depth complexity is too great and too
many layers would have to be peeled, each layer increasing the execution
time of the method. Furthermore, depth peeling is more difficult to adopt
into graphics engines as otherwise unnecessary geometry passes to peel the
depth layers have to be performed. Another approach is to use multiple
views of the scene to fill in missing information. This is pursued in [85] and
[68] by rasterizing additional views using phantom cameras around the real
one. In order to avoid having to rasterize new views just for SSAO, shadow
map [89] views can be used instead of the additional cameras at no extra
cost.

The second limitation in the depth buffer geometry is that geometry
outside the view frustum is unknown. Most methods mentioned in this
section mitigate this problem by extending the depth buffer in each direction
by 10 % or so to form a guard band. Geometry within the guard band
is considered as potential occluders for the visible pixels which alleviates
the problem of missing occlusion from occluders that are right outside the
framebuffer.

High quality AO requires a prohibitively large number of samples around
the receiver, especially for a large AO radius. To combat the cost of far-field

24

AO multi-scale methods have been proposed, much like the multi-resolution
methods described in Section 2.2.2. In [4] and [36] ambient occlusion is
evaluated on multiple resolutions of the depth buffer and the results are
then upsampled and combined with the full resolution result. Regardless
of the used low-pass filter, filtered lower resolutions of the depth buffer do
not preserve the original geometry and can significantly corrupt occluders
whose projection in the depth buffer is thin.

Finally, a series of refinements to the above approaches have been pro-
posed, such as allowing for more artistic control and optimizing the evalu-
ation of the AO integral [55]. In [54] sampling patterns and texture cache
efficiency are improved as well as the performance of the commonly used blur
phase which hides noise that arises from sparse sampling. AO evaluation can
also be interpreted as a filter kernel and assumed separable [38]. While AO
is not physically separable, this approach can significantly reduce execution
times especially for large kernels without introducing very disturbing visual
artifacts.

Despite the extensive research effort, SSAO methods still suffer from
several issues. Firstly, they do not approximate the integral in Equation 1.3
accurately and therefore do not converge to a ray traced reference which
can be obtained by evaluating the Equation 1.3 by casting many rays from
each receiver point into the screen-space scene geometry. Secondly, high
quality results require more samples per pixel than is practically affordable
in real-time applications and therefore sparse sampling is resorted to. Sparse
sampling is prone to miss thin occluders and cause under-occlusion as well
as to produce noisy results. If noise is alleviated by a post-process blur,
details are lost. Thirdly, to limit the sampling radius SSAO effects are often
limited to very local effects which tend to look unrealistic and produce dark
halos around objects. Finally, the problem of incomplete scene geometry
has not yet been fully solved.

Our work targets the first three issues: in [P3] we reduce the compu-
tational complexity of the geometrically correct approach [5] and manage
an order of magnitude reduction in its render times. In [P4] we propose
a method which accurately captures occluders in the depth buffer within
unlimited radius at constant real-time render times, and evaluates the AO
integral accurately such that results very close to ray traced screen-space
reference are obtained.

25

26

Chapter 3

Height field visibility

Two of the publications in this thesis propose methods which lower the time
complexity for determining visibility in height fields. In [P1] the time com-
plexity for determining the horizon map in K azimuthal directions for a
point in N ×N height fields is lowered from O(K ·N) of previous work to
O(K), whereas [P2] lowers the time complexity for determining intervisibil-
ity from O(K ·N) of previous work to between O(K ·N0.01) and O(K ·N0.65).
In Section 3.1 we discuss the time complexity and the output space complex-
ity of the horizon map and intervisibility computation. The way [P1] and
[P2] traverse the height field is described in Section 3.2 and the algorithms
used during the traversals are described in Sections 3.3 and 3.4, respectfully.
Results are presented in Section 3.5.

3.1 Computational complexity

For simplicity, in this section we assume square N×N height fields. Current
state-of-the-art height field methods determine visibility in a number of dis-
crete azimuthal directions at each receiver point. In [P1] and [P2] we take
the same approach and here denote the number of uniformly distributed
azimuthal directions by K. K can be freely chosen, but for low values of
K, say K < 15, banding artifacts in the illumination results may become
visible.

Previous methods perform independent visibility searches for each re-
ceiver by sampling the height field along the azimuthal directions. For both
the horizon map generation (Section 2.2.1) and the intervisibility determi-
nation (Section 2.2.3) O(K ·N) iterations per receiver have to be performed
in order to accurately cover the height field. If approximate results are suf-
ficient, this cost can be reduced to O(K · log(N)) through multi-resolution
height fields (Section 2.2.2).

27

Traversal method Time complexity Accuracy

Horizon map generation, output complexity of O(1):

Linear [83] O(N) exact, sector centerline
Multi-resolution [78] O(log(N)) approximate
Full sector [80] O(log2(N)) exact, max within sector
Our method [P1] O(1) exact, sector centerline

Intervisibility calculation, output complexity of O(Nk), 0 < k < 2
3 :

Linear [68] O(N) exact, sector centerline
Multi-resolution [61] O(log(N)) approximate
Our method [P2] O(Nk) exact, sector centerline

Table 3.1: The space complexities of exact visibility information at one
receiver point along one azimuthal direction, and the corresponding time
complexities for different height field visibility algorithms that calculate the
information.

When the horizon map is generated for the purpose of shadowing direct
external light, the output for each receiver is K horizon values. When
intervisibility is determined, the output per receiver is a description of the
visible points in the height field along each azimuthal direction. The amount
of output data is therefore dependent on the height field content. While
in the worst case the amount of data may be O(K · N) per receiver, in
practical height fields visibility scales strongly sub-linearly in the height field
size. In [P2] we measured visibility scaling to be between O(K ·N0.01) and
O(K ·N0.65) where the lower limit is reached when the height field is grown
such that new content is introduced, and the higher limit is reached when
the resolution of the existing content is increased. We measured the average
number of visible height field points to be 1 - 6 % of the total number of
height field points for different types of 1024× 1024 height fields.

Both of our methods, [P1] and [P2], determine visibility in time that is
linear in the amount of output data. Table 3.1 compares the time complexi-
ties of the previous work and our methods for horizon map and intervisibility
computation. It should be noted that the method in [80] has not been found
suitable for real-time evaluation.

3.2 Height field traversal

Instead of performing independent visibility searches for each receiver point
as done in prior work, we perform K sweeps over the height field and simul-
taneously determine visibility for all height field points along the direction
of the sweep. Sweeps are performed in parallel lines (Figure 3.1, left), where
each line is incrementally traversed by taking unit length steps along the

28

Figure 3.1: For one azimuthal direction, the height field is processed in
parallel lines shown to the left. Each line is traversed one step at a time by
sampling the height field at the corresponding coordinate as shown to the
right.

line (Figure 3.1, right). After the sweeps have been performed and their
results have been written to intermediate buffers, they are gathered in a
post-process to obtain the full result as shown in Figure 3.2.

We assume the height field to be continuous and use bilinear interpola-
tion to sample the height field at the corresponding floating point coordinate
of each step. While this type of sampling does not exactly visit the origi-
nal height field points it is sufficiently accurate in practice, especially when
the height field represents sampled data itself. Once the height field has
been sampled, the sampled point is inserted into an internal data structure.
The data structures for determining the horizon map and intervisibility are
different and are described in Sections 3.3 and 3.4, respectively.

After the internal data structure has been updated with the new height
field point, visibility of the previously visited samples along the line as seen
from the new point can be trivially read from the data structure. The
visibility information can either be stored for later use, or illumination (or
any function of visibility) can be directly evaluated and stored. In [P1]
we also propose a novel way to accurately and efficiently integrate direct
illumination according to Equation 1.1 from an environment light source
given as a high dynamic range cube map [20].

3.3 Horizon map computation

When generating a horizon map in [P1], the internal data structure we use
is logically a stack which holds, at any given point, the convex hull subset
of the traversed height field points. The motivation for this is that for any
height field point along the line of traversal the point casting the horizon
is always part of the convex hull, and in fact the immediate neighbor of

29

Figure 3.2: Three sweeps (denoted by different colors) are performed over the
input height field (left), their results are written to axis-aligned intermediate
buffers (center), and finally accumulated in the result buffer (right).

the receiver. When a new height field point along the line is processed,
the convex hull stack is popped until the new point can be inserted into the
stack such that the set remains convex. The point previous to the new point
in the stack then is the point that casts the highest horizon onto the new
point. The progression along one line is demonstrated in Figure 3.3, and
the extracted horizon angles along a sweep are visualized in Figure 3.4.

Appendix A.1 lists the procedure that processes one line along the height
field and outputs the global horizons for points along the line. In a threaded
implementation, one thread processes one line and a total of approximately
(1 +

√
2)/2 ·N ·K lines can be processed in parallel.

3.4 Intervisibility computation

The internal data structure used to determine intervisibility in [P2] is a
convex hull tree. During traversal the line is split into convex and concave
parts and visibility of each convex-concave pair is determined. From the
beginning of each convex part, a convex hull is formed much like a convex
hull is formed from the beginning of the line when generating horizon maps.
Multiple convex hulls are therefore formed, and they are stored into a tree
structure as listed in detail in Appendix A.2. This structure is useful because
intervisibility becomes described in intervals by a series of visibility horizons
that point towards the surface itself.

30

p
popped points

direction of line traversal

Figure 3.3: The convex hull subset of the height field points. When p is
inserted, the red points are popped from the hull, making the blue point the
highest horizon caster for point p.

Figure 3.5 visualizes a convex hull tree. The new height field point is
always the root node of this tree. The vertices of the first-level children of
the root form a series of local visibility horizons. Local visibility horizons
were first introduced in [19] and they constitute a more compact description
of height field visibility than a simple enumeration of the visible points.
Local visibility horizons start from the receiver and always end at a point in
the height field that is visible from the receiver but whose previous point is
not. A pair of visibility horizons therefore encloses consecutive visible height
field points. If needed, it is trivial to enumerate the visible points from the
set of local visibility horizons.

3.5 Results

On 10242 height fields [P1] reduces the number of algorithm iterations re-
quired to generate a horizon map by more than two orders of magnitude,
and [P2] reduces intervisibility determination by roughly two orders of mag-
nitude. The source of this reduction is the reduced time complexity and
therefore the difference to previous work gets greater with larger height
fields. Practical execution times are also reduced significantly with respect
to previous work. This is more prominent in [P1] due to its simpler imple-
mentation: compared to most relevant prior work [78] our algorithm calcu-
lates the horizon map roughly 15 times faster and at the same time more
accurately. Due to its accuracy our method is able to produce both low-
and high-frequency self-shadowing as shown in Figure 3.6. Figure 3.7 shows
a height field rendered under environment lighting.

The implementation of [P2] on the other hand is more challenging due
to algorithmic complexity, and its performance is dependent on the height

31

Figure 3.4: Visualization of the extracted horizons for one partially finished
azimuthal sweep.

field content. However, we measured that our algorithm calculates exact
intervisibility information faster than previous work in all of our test cases,
and the speed-up varied between 2.4 and 41 in typical 10242 height fields.
Intervisibility information is necessary in indirect illumination and to render
surfaces that self-emit light. Figure 3.8 shows a height field that is directly
and indirectly lit using our methods [P1] and [P2] under outdoor lighting.
Figure 3.9 shows a height field which, in addition to direct and indirect
illumination, also emits light.

32

p

p

Figure 3.5: Top: convex hulls are formed from the beginning of each convex
part (dark blue) to the latest height field sample p and organized into a tree
structure. Bottom: visualization of a convex hull tree in a fractal terrain
(Figure 1.3, right). Shared links are highlighted in green.

33

Figure 3.6: A 10242 height field illuminated using different light source sizes
shown in the unfolded cube map to the top right of each image. Both low-
and high-frequency shadows are produced by the method in [P1].

Figure 3.7: A height field illuminated using the method proposed in [P1]
using environment light maps that are shown unfolded to the top left of each
image. The horizon map information is generated in 0.30 ms per direction
and illumination is rendered in 0.35 ms per direction for the full 10242 height
field on an NVIDIA GeForce GTX 280.

34

Figure 3.8: A diffuse height field indirectly illuminated using our method
in [P2] under outdoor environment lighting. Intervisibility information is
calculated in 3.14 ms per azimuthal direction for the full 10242 height field
on an NVIDIA GeForce GTX 480.

35

Figure 3.9: Indirectly illuminated 10242 height field using our method in
[P2]. Additionally, parts of the height field emit light. Intervisibility infor-
mation is calculated in 0.59 ms per direction on an NVIDIA GeForce GTX
480.

36

Chapter 4

Screen-space ambient
obscurance

Two of the methods in this thesis improve quality, scaling, and perfor-
mance of the popular screen-space ambient obscurance (SSAO) method. The
method presented in [P3], described in more detail in Section 4.1, accelerates
the rendering of approximate AO effects by reducing the time complexity
over previous work. The method in [P4] on the other hand targets higher
quality AO results than previous methods but at comparable render times,
and is described in Section 4.2.

4.1 Line-Sweep Ambient Obscurance

The horizon-based ambient occlusion (HBAO) [5] method closely relates to
our method. HBAO is an established SSAO method and often used as a
reference for new SSAO methods. It takes a given number of samples, M ,
from each receiver point along K discrete azimuthal directions. The highest
horizon from these samples is found along each azimuthal direction, and the
occlusion cast by it is weighted according to a distance dependent falloff
function. The physically based treatment of geometry in this method pro-
duces more accurate results and scales better quality-wise than methods
which do not check whether the sampled occluders are visible (unoccluded
by a nearer occluder along the same direction) to the receiver point. This
approach, however, comes with a costly execution time because relatively
many samples have to be taken. Specifically, O(K ·M) operations are per-
formed per pixel and the AO radius often has to be limited to keep M
manageable.

The method in [P3] targets the time complexity of this approach and
achieves essentially the same results in O(K) operations per pixel. We start
from the insight of [P1] that the global horizons for each height field point

37

can be extracted in O(K) time per receiver. The geometrical convex hull
subset of points along lines on the height field are kept track of in [P1], which
are only usable for determining the global horizon. For the purpose of calcu-
lating ambient obscurance, the point that casts the global horizon might be
far away from the receiver, and as occlusion should be weighted according
to a falloff function, it may cast an insignificant amount of occlusion.

Therefore, instead of generating a geometric convex hull, we generate an
obscurance hull which essentially stores a set of points according to how much
falloff attenuated occlusion they cast. From the obscurance hull the point
casting the largest occlusion in each azimuthal direction can be extracted
in order to approximate AO. Because the amount of occlusion any single
point casts is dependent on the direction of the receiver’s normal, defining
the obscurance hull is non-trivial. We evaluate different strategies to define
the hull and to evaluate AO and propose a method which produces results
virtually identical to HBAO.

Furthermore, we suggest an acceleration strategy which employs sparse
sampling and an edge-aware gather phase to produce slightly blurred re-
sults but at faster render times. Finally we demonstrate how, during line
traversal, having to interpolate the depth data can be avoided by carefully
selecting sampling patterns. Using the suggested sampling patterns the
method becomes suitable for evaluating AO on depth fields which generally
cannot be assumed continuous.

4.2 Far-Field Screen-Space Ambient Obscurance

The method [P4] has a O(K · log(N)) time complexity on N2 depth fields
similarly to previous multi-resolution SSAO methods, but achieves higher
quality results. Previous methods which rely on point sampling the depth
field have trouble scaling to far-field effects because maintaining a certain
sampling density quickly escalates the number of samples required to cover
a large screen-space radius. Sparse sampling, on the other hand, is prone to
produce various undersampling artifacts because occluders can be missed.

When mipmaps are used to cover a larger area of the depth field when
sampling farther from the receiver, another problem arises: filtering the
lower resolution mip levels corrupts the view-dependent features of the depth
field which are important for computing accurate AO. We tackle this prob-
lem by pre-processing the depth field in two fast phases that are of O(K)
time complexity. These two phases and the final evaluation phase are il-
lustrated in Figure 4.1. The first scanning phase locates local peaks in the
depth field and stores an intermediate representation of them. Second is the
prefix sum phase which prepares the intermediate data for fast occluder in-
tegration across the whole width of each azimuthal sector. After these two

38

Scan Prefix sum Sampling

p

h0

h1

Figure 4.1: The three phases of [P4]: Firstly the height field is scanned and
a view-dependent representation of local peaks of the height field is created.
Secondly the representation is turned into a set of prefix sums. Thirdly
points hi are reconstructed that accurately represent features important for
AO, averaged across the sector width.

pre-processing phases ambient occlusion is evaluated in the usual fashion
where AO is calculated for each screen pixel separately. Instead of directly
sampling the depth field or its mipmaps, scene points are reconstructed from
the processed intermediate data. These scene points are tailored to capture
depth field features that are specifically important for AO, and only a small
number of these samples need to be used for an accurate representation of
the surrounding geometry.

A resolution hierarchy for the intermediate representation can also be
generated and features are still accurately represented without distortions
that are typical of averaging used in previous state-of-the-art methods.
Overall our method is able to integrate ambient occlusion effects accurately
from the entire framebuffer for each receiver point using only a small num-
ber of reconstructed scene points. Our second contribution in [P4] is an
obscurance estimator which accurately estimates Equation 1.3 and there-
fore converges to a ray traced reference result.

4.3 Results

The method proposed by [P3] achieves results similar to HBAO but an or-
der of magnitude faster. HBAO’s performance depends on the AO radius
in screen-space whereas our method executes in constant time and quality
regardless of the AO effect’s radius. As the AO radius may become arbitrar-
ily large in screen-space, previous methods often resort to undersampling to
keep render times under control. Our method, on the other hand, avoids
this and produces smooth ambient occlusion. Figure 4.2 shows the Šibenik
Cathedral rendered by our method in [P3], and Figure 4.3 contrasts our

39

Figure 4.2: SSAO rendered using the method in [P3] in the Šibenik Cathe-
dral model in 8 azimuthal directions (K = 8) at 1280×720 resolution in 0.7
ms on an NVIDIA GeForce GTX 480.

Screen resolution [P3] HBAO

800×600 1.49 ms 10.5 ms
1280×720 2.56 ms 24.2 ms
1920×1080 5.24 ms 92.5 ms
2560×1600 9.58 ms 249 ms

Table 4.1: Render times of our method [P3] and HBAO at different resolu-
tions with a 20 % guard band. The scene used is shown to the bottom in
Figure 4.3.

method with HBAO. Scaling with respect to screen resolution is listed in
Table 4.1.

The method in [P4] evaluates AO using information from the entire
framebuffer and due to the way the obscurance estimator is constructed it is
able to use any falloff function such that the complexity of the falloff func-
tion does not affect execution time. At the same number of sample points
the intermediate geometry representation achieves an order of magnitude
smaller errors than average mipmaps that are used by the previous state-
of-the-art methods. Figure 4.4 compares our sampling strategy against the
mipmap sampling using the same number of scene samples. Overall [P4]
achieves render results that are within a few percent of a ray traced screen-
space reference result at real-time frame rates. Figure 4.5 shows another
scene rendered by our method next to a screen-space ray traced reference.

40

[P3] K = 16

2.56 ms

HBAO K = 16,M = 32

24.2 ms

[P3] K = 16

1.93 ms

HBAO K = 16,M = 48

37.2 ms

Figure 4.3: The Stanford Dragon, courtesy of Stanford Computer Graphics
Laboratory, and the Sponza scene, courtesy of Frank Meinl, Crytek, ren-
dered at 1280 × 720 by the method in [P3] and by HBAO with the render
times shown below each image. For HBAO the number of steps along each
of the K azimuthal directions is denoted by M whereas our method has a
constant cost per direction.

41

[P4] K = 8× 2 error×5

Mipmap K = 16 error×5

Ray traced

Figure 4.4: SSAO evaluated by our geometry [P4] and by mipmap geometry
and their respective error images (white = 0 %, black ≥ 20 %, brighter
is better) of the ray traced reference. Both methods use the obscurance
estimator from [P4].

42

Our method

Ray traced

Figure 4.5: Top: far-field SSAO component rendered by our method [P4] in
4.6 ms in a 1280×720 framebuffer on an AMD Radeon HD 7970. Bottom:
ray traced screen-space reference result.

43

44

Chapter 5

Conclusion and future work

5.1 Conclusion

Plausible illumination, both direct and indirect, is the most important part
in photorealistic rendering. Determining visibility of the light sources and
the scene geometry for each visible scene point is the most computation-
ally challenging stage of illumination computation. In Chapter 3, we have
presented two novel methods that lower the computational complexity of
visibility calculations on height field geometry. The first method, [P1], low-
ers the time complexity of calculating the horizon map on N×N height fields
to O(1) per point compared to O(N) in previous work. The horizon map
can be used to calculate the visibility of arbitrary direct light sources outside
of the height field. The second method, [P2], lowers the time complexity of
calculating intervisibility from O(N) of previous work to between O(N0.01)
and O(N0.65) in common types of height fields, and is content dependent.
In 10242 height fields two orders of magnitude less iterations are required as
compared to previous work. The intervisibility information can be used to
produce self-illumination and indirect illumination effects in height fields.

Ambient occlusion or obscurance is a very popular method to plausibly
and efficiently reproduce difficult global illumination effects, and screen-
space evaluation of it has been adopted by most current real-time renderers.
In Chapter 4, we presented two methods that improve render times and
render quality of SSAO. Previous SSAO methods sample the depth field
around each receiver point whereas the method introduced by [P3] uses line
sweeps to calculate occlusion for multiple points in one process. This reduces
the time complexity to evaluate SSAO and achieves an order of magnitude
reduction in render times. Finally, [P4] improves the descriptiveness of sam-
ples that are taken from the depth field by pre-processing the depth data into
an intermediate form that is tailored to capture features that are important
for AO. Combined with an improved way to evaluate the ambient occlusion

45

integral, the method achieves higher quality renderings than previous SSAO
methods but does not increase render times.

5.2 Future work

This thesis has introduced new visibility algorithms which show significantly
lower time complexity than methods that are used for generic scene geom-
etry today. As time complexity is the fundamental measure of efficiency
and scalability, we hope that these ideas can be generalized to arbitrary ge-
ometries instead of being limited to height fields. This is not a trivial task,
but worth investigating further as any reduction in time complexity has the
potential to have a long-lasting impact on future algorithms.

Another way to apply these algorithms to more generic geometry is via
the screen-space approach, which has gained recent interest in both academia
and industry. While geometry available in the depth buffer is incomplete,
there has been promising recent activity towards solving or at least mitigat-
ing this problem by either making assumptions about the missing regions
of the scene or by completing geometry with multiple depth layers or aux-
iliary views. It remains to be seen whether the limitations of screen-space
geometry can be overcome to a sufficient extent in the future or whether
higher time complexity methods that work on generic geometries eventually
replace them by becoming fast enough for real-time evaluation in practical
scenes.

46

Bibliography

[1] AMD. AMD Graphics Core Next (GCN) Architecture white paper, June
2012.

[2] Thomas Annen, Zhao Dong, Tom Mertens, Philippe Bekaert, Hans-
Peter Seidel, and Jan Kautz. Real-time, all-frequency shadows in dy-
namic scenes. In ACM SIGGRAPH ’08, 2008.

[3] Okan Arikan, David A Forsyth, and James F O’Brien. Fast and detailed
approximate global illumination by irradiance decomposition. In ACM
Transactions on Graphics (TOG), volume 24, pages 1108–1114. ACM,
2005.

[4] Louis Bavoil and Miguel Sainz. Multi-layer dual-resolution screen-space
ambient occlusion. In SIGGRAPH ’09 Talks. ACM, 2009.

[5] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08 Talks, 2008.

[6] Jeffrey C Beran-Koehn and Mark J Pavicic. A cubic tetrahedral adap-
tation of the hemi-cube algorithm, 1991.

[7] Jǐŕı Bittner, Peter Wonka, and Michael Wimmer. Fast exact from-
region visibility in urban scenes. In Proceedings Eurographics Sympo-
sium on Rendering, pages 223–230, June 2005.

[8] Chas Boyd. The directx 11 compute shader. In ACM SIGGRAPH,
2008.

[9] Rob Bredow and Sony Pictures Imageworks. Renderman on film. SIG-
GRAPH 2002 Course Notes. Course, 16(6):7, 2002.

[10] M Bunnell. Dynamic ambient occlusion and indirect lighting, pages
223–233. Addison-Weseley Professional, 2005.

[11] Per H Christensen. Note# 35: Ambient occlusion, image-based illumi-
nation, and global illumination. PhotoRealistic RenderMan Application
Notes, 2002.

47

[12] Per H Christensen. Global illumination and all that. SIGGRAPH 2003
course notes, 9:31–72, 2003.

[13] Michael F Cohen and Donald P Greenberg. The hemi-cube: A radiosity
solution for complex environments. In ACM SIGGRAPH Computer
Graphics, volume 19, pages 31–40. ACM, 1985.

[14] Daniel Cohen-Or, Yiorgos L Chrysanthou, Claudio T. Silva, and Frédo
Durand. A survey of visibility for walkthrough applications. Visual-
ization and Computer Graphics, IEEE Transactions on, 9(3):412–431,
2003.

[15] Daniel Cohen-or and Amit Shaked. Visibility and dead-zones in digital
terrain maps. Computer Graphics Forum, 14:171–180, 1995.

[16] Richard Cole and Micha Sharir. Visibility problems for polyhedral ter-
rains. J. Symb. Comput., 7(1):11–30, 1989.

[17] Carsten Dachsbacher and Marc Stamminger. Reflective shadow maps.
In Proceedings of the 2005 symposium on Interactive 3D graphics and
games, pages 203–231. ACM, 2005.

[18] Carsten Dachsbacher, Marc Stamminger, George Drettakis, and Frédo
Durand. Implicit visibility and antiradiance for interactive global illu-
mination. ACM Trans. Graph., 26(3):61, 2007.

[19] Leila De Floriani and Paola Magillo. Computing point visibility on a
terrain based on a nested horizon structure. In SAC ’94: Proceedings of
the 1994 ACM symposium on Applied computing, pages 318–322, New
York, NY, USA, 1994. ACM.

[20] Paul Debevec. Rendering synthetic objects into real scenes: bridging
traditional and image-based graphics with global illumination and high
dynamic range photography. In Proceedings SIGGRAPH ’98, pages
189–198, New York, NY, USA, 1998. ACM.

[21] Michael Deering, Stephanie Winner, Bic Schediwy, Chris Duffy, and
Neil Hunt. The triangle processor and normal vector shader: a vlsi
system for high performance graphics. In Proceedings of the 15th an-
nual conference on Computer graphics and interactive techniques, SIG-
GRAPH ’88, pages 21–30, New York, NY, USA, 1988. ACM.

[22] Rouslan Dimitrov, Louis Bavoil, and Miguel Sainz. Horizon-split am-
bient occlusion. In I3D ’08: Proceedings of the 2008 symposium on
Interactive 3D graphics and games, New York, NY, USA, 2008. ACM.

48

[23] Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Ad-
vanced Global Illumination. AK Peters Ltd, 2006.

[24] Dominic Filion and Rob McNaughton. Effects & techniques. In ACM
SIGGRAPH 2008 Games, SIGGRAPH ’08, pages 133–164, New York,
NY, USA, 2008. ACM.

[25] Jeremy Fishman, Herman Haverkort, and Laura Toma. Improved visi-
bility computation on massive grid terrains. In GIS ’09: Proceedings of
the 17th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 121–130, New York, NY, USA,
2009. ACM.

[26] Leila De Floriani and Paola Magillo. Visibility algorithms on trian-
gulated digital terrain models. International Journal of Geographical
Information Systems, 8(1):13–41, 1994.

[27] Stichting Blender Foundation. Blender 2.63. http://blender.org/,
2013.

[28] Wm Randolph Franklin and Clark Ray. Higher isnt necessarily better:
Visibility algorithms and experiments. In Advances in GIS research:
sixth international symposium on spatial data handling, volume 2, pages
751–770. Edinburgh, 1994.

[29] Wm Randolph Franklin, Clark K Ray, and Shashank Mehta. Geomet-
ric algorithms for siting of air defense missile batteries. A], Research
Project for Battle, (2756), 1994.

[30] Cindy M Goral, Kenneth E Torrance, Donald P Greenberg, and Ben-
nett Battaile. Modeling the interaction of light between diffuse surfaces.
In ACM SIGGRAPH Computer Graphics, volume 18, pages 213–222.
ACM, 1984.

[31] Kris Gray. Microsoft DirectX 9 programmable graphics pipeline. Mi-
crosoft Pr, 2003.

[32] Khronos OpenCL Working Group et al. The opencl specification. A.
Munshi, Ed, 2008.

[33] Tom R. Halfhill. Parallel Processing with CUDA. Microprocessor Re-
port, January 2008.

[34] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and
François Sillion. A survey of real-time soft shadows algorithms, dec
2003.

49

[35] Wolfgang Heidrich, Katja Daubert, Jan Kautz, and Hans-Peter Sei-
del. Illuminating micro geometry based on precomputed visibility. In
Proceedings of the 27th annual conference on Computer graphics and in-
teractive techniques, pages 455–464. ACM Press/Addison-Wesley Pub-
lishing Co., 2000.

[36] Thai-Duong Hoang and Kok-Lim Low. Efficient screen-space approach
to high-quality multiscale ambient occlusion. The Visual Computer,
28(3):289–304, 2012.

[37] Jared Hoberock and Yuntao Jia. High-quality ambient occlusion. GPU
gems, 3:257–274, 2007.

[38] Jing Huang, Tamy Boubekeur, Tobias Ritschel, Matthias Hollnder, and
Elmar Eisemann. Separable approximation of ambient occlusion. In
Eurographics 2011 - Short papers, 2011.

[39] Henrik Wann Jensen. Realistic image synthesis using photon mapping.
AK Peters, Ltd., 2001.

[40] James T. Kajiya. The rendering equation. In Proceedings SIGGRAPH
’86, pages 143–150, New York, NY, USA, 1986. ACM.

[41] Anton Kaplanyan. CryENGINE 3: Reaching the speed of light. In
Tatarchuk Natalya, editor, ACM SIGGRAPH 2010 Advances in Real-
time Rendering Course, 2010.

[42] Branko Kaučič and Borut Zalik. Comparison of viewshed algorithms
on regular spaced points. In SCCG ’02: Proceedings of the 18th spring
conference on Computer graphics, pages 177–183, New York, NY, USA,
2002. ACM.

[43] Alexander Keller. Instant radiosity. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, pages 49–
56. ACM Press/Addison-Wesley Publishing Co., 1997.

[44] Daniel Kersten, Pascal Mamassian, and David C Knill. Moving cast
shadows induce apparent motion in depth. PERCEPTION-LONDON-,
26:171–192, 1997.

[45] Janne Kontkanen and Samuli Laine. Ambient occlusion fields. In
Proceedings of ACM SIGGRAPH 2005 Symposium on Interactive 3D
Graphics and Games, pages 41–48. ACM Press, 2005.

[46] Eric P Lafortune and Yves D Willems. Bi-directional path tracing. In
Proceedings of CompuGraphics, volume 93, pages 145–153, 1993.

50

[47] Samuli Laine and Tero Karras. Two methods for fast ray-cast ambient
occlusion. CGF: Proceedings of EGSR 2010, 29(4), 2010.

[48] Hayden Landis. Production-ready global illumination. Siggraph course
notes, 16(2002):11, 2002.

[49] MS Langer and SW Zucker. Shape-from-shading on a cloudy day. JOSA
A, 11(2):467–478, 1994.

[50] Bradford James Loos and Peter-Pike Sloan. Volumetric obscurance. In
Proceedings of I3D 2010. ACM, 2010.

[51] Pascal Mamassian, David C Knill, and Daniel Kersten. The perception
of cast shadows. Trends in cognitive sciences, 2(8):288–295, 1998.

[52] Nelson Max. Horizon mapping: shadows for bump-mapped surfaces.
The Visual Computer, 4(2):109–117, March 1988.

[53] Morgan McGuire. Ambient occlusion volumes. In Proceedings of High
Performance Graphics 2010, June 2010.

[54] Morgan McGuire, Michael Mara, and David Luebke. Scalable ambient
obscurance. In High-Performance Graphics 2012, June 2012.

[55] Morgan McGuire, Brian Osman, Michael Bukowski, and Padraic Hen-
nessy. The alchemy screen-space ambient obscurance algorithm. In
Proc. HPG, HPG ’11, pages 25–32. ACM, 2011.

[56] Àlex Méndez-Feliu and Mateu Sbert. From obscurances to ambient
occlusion: A survey. The Visual Computer, 25(2):181–196, 2009.

[57] Gavin Miller. Efficient algorithms for local and global accessibility shad-
ing. In Proceedings of the 21st annual conference on Computer graphics
and interactive techniques, pages 319–326. ACM, 1994.

[58] Martin Mittring. Finding next gen: Cryengine 2. In SIGGRAPH ’07:
ACM SIGGRAPH 2007 courses, pages 97–121. ACM, 2007.

[59] George Nagy. Terrain visibility. Computers & Graphics, 18(6):763–773,
1994.

[60] Greg Nichols, Jeremy Shopf, and Chris Wyman. Hierarchical image-
space radiosity for interactive global illumination. In Computer Graph-
ics Forum, volume 28, pages 1141–1149. Wiley Online Library, 2009.

[61] Derek Nowrouzezahrai and John Snyder. Fast global illumination on
dynamic height fields. Computer Graphics Forum: Eurographics Sym-
posium on Rendering, jun 2009.

51

[62] Chris Oat and Pedro Sander. Ambient aperture lighting. In SIG-
GRAPH ’06: ACM SIGGRAPH 2006 Courses, pages 143–152, New
York, NY, USA, 2006. ACM.

[63] K. Onoue, N. Max, and T. Nishita. Real-time rendering of bumpmap
shadows taking account of surface curvature. In Cyberworlds, 2004
International Conference on, pages 312–318, 2004.

[64] Georgios Papaioannou, Maria Lida Menexi, and Charilaos Papadopou-
los. Real-time volume-based ambient occlusion. Visualization and Com-
puter Graphics, IEEE Transactions on, 16(5):752–762, 2010.

[65] Fabio Policarpo and Manuel M Oliveira. Relief mapping of non-height-
field surface details. In Proceedings of the 2006 symposium on Interac-
tive 3D graphics and games, pages 55–62. ACM, 2006.

[66] Christoph Reinbothe, Tamy Boubekeur, and Marc Alexa. Hybrid am-
bient occlusion. EUROGRAPHICS 2009 Areas Papers, 2009.

[67] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan
Kautz. The state of the art in interactive global illumination. Computer
Graphics Forum, 31, February 2012.

[68] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approximat-
ing dynamic global illumination in image space. In I3D ’09: Proceedings
of the 2009 symposium on Interactive 3D graphics and games, pages
75–82, New York, NY, USA, 2009. ACM.

[69] Marc Ruiz, Lázló Szirmay-Kalos, Tamás Umenhoffer, Imma Boada,
Miquel Feixas, and Mateu Sbert. Volumetric ambient occlusion for
volumetric models. The Visual Computer, 26(6-8):687–695, 2010.

[70] Perumaal Shanmugam and Okan Arikan. Hardware accelerated ambient
occlusion techniques on gpus. In Proc. I3D ’07. ACM, 2007.

[71] CN Shen and George Nagy. Autonomous navigation to provide long-
distance surface traverses for mars rover sample return mission. In
Intelligent Control, 1989. Proceedings., IEEE International Symposium
on, pages 362–367. IEEE, 1989.

[72] Ying Shen, Li Lin, Mei Yang, and Gao Yurong. Viewshed computation
based on los scanning. volume 2, pages 984 –987, dec. 2008.

[73] Dave Shreiner et al. OpenGL programming guide: the official guide to
learning OpenGL, versions 3.0 and 3.1. Pearson Education, 2009.

[74] Dave Shreiner et al. OpenGL programming guide: the official guide to
learning OpenGL, version 4.3. Pearson Education, 2013.

52

[75] Michael Sipser. Introduction to the Theory of Computation, volume 2.
Thomson Course Technology Boston, 2006.

[76] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency lighting envi-
ronments. In ACM Transactions on Graphics (TOG), volume 21, pages
527–536. ACM, 2002.

[77] Peter-Pike J. Sloan and Michael F. Cohen. Interactive horizon mapping.
In Proceedings of the Eurographics Workshop on Rendering Techniques
2000, pages 281–286, London, UK, 2000. Springer-Verlag.

[78] John Snyder and Derek Nowrouzezahrai. Fast soft self-shadowing on
dynamic height fields. Computer Graphics Forum: Eurographics Sym-
posium on Rendering, June 2008.

[79] Cyril Soler, Olivier Hoel, and Frank Rochet. A deferred shading pipeline
for real-time indirect illumination. In ACM SIGGRAPH 2010 Talks,
SIGGRAPH ’10, pages 18:1–18:1, New York, NY, USA, 2010. ACM.

[80] A. James Stewart. Fast horizon computation at all points of a ter-
rain with visibility and shading applications. IEEE Transactions on
Visualization and Computer Graphics, 4(1):82–93, 1998.

[81] L Szirmay-Kalos and T Umenhoffer. Displacement mapping on the gpu
— state of the art. volume 27, pages 1567–1592, 2008.

[82] László Szirmay-Kalos, Tamás Umenhoffer, Balázs Tóth, László Szécsi,
and Mateu Sbert. Volumetric ambient occlusion for real-time rendering
and games. Computer Graphics and Applications, IEEE, 30(1):70–79,
2010.

[83] Natalya Tatarchuk. Practical parallax occlusion mapping with approx-
imate soft shadows for detailed surface rendering. In SIGGRAPH ’06:
ACM SIGGRAPH 2006 Courses, pages 81–112, New York, NY, USA,
2006. ACM.

[84] V. Timonen. Real-time visual simulation of volumetric surfaces. Mas-
ter’s thesis, University of Kuopio, November 2006.

[85] Kostas Vardis, Georgios Papaioannou, and Athanasios Gaitatzes.
Multi-view ambient occlusion with importance sampling. In Proc. i3D,
I3D ’13, pages 111–118, 2013.

[86] Eric Veach and Leonidas J Guibas. Metropolis light transport. In
Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, pages 65–76. ACM Press/Addison-Wesley Pub-
lishing Co., 1997.

53

[87] Ingo Wald, William R Mark, Johannes Günther, Solomon Boulos, Thi-
ago Ize, Warren Hunt, Steven G Parker, and Peter Shirley. State of
the art in ray tracing animated scenes. In Computer Graphics Forum,
volume 28, pages 1691–1722. Wiley Online Library, 2009.

[88] Leonard R Wanger, James Ferwerda, and Donald P Greenberg. Per-
ceiving spatial relationships in computer-generated images. IEEE Com-
puter Graphics and Applications, 12(3):44–58, 1992.

[89] Lance Williams. Casting curved shadows on curved surfaces. SIG-
GRAPH Comput. Graph., 12(3):270–274, 1978.

[90] Lance Williams. Pyramidal parametrics. SIGGRAPH Comput. Graph.,
17(3):1–11, July 1983.

[91] Craig M Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. Fermi
gf100 gpu architecture. Micro, IEEE, 31(2):50–59, 2011.

[92] Sergej Zhukov, Andrej Inoes, and Grigorij Kronin. An Ambient Light
Illumination Model. In George Drettakis and Nelson Max, editors,
Rendering Techniques ’98, Eurographics, pages 45–56. Springer-Verlag
Wien New York, 1998.

54

Part II

Original publications

55

Publication P1

Ville Timonen and Jan Westerholm. Scalable Height Field Self-Shadowing.
Computer Graphics Forum, 29(2), pages 723–731, 2010. Eurographics Con-
ference 2010. 3rd Best Paper.

EUROGRAPHICS 2010 / T. Akenine-Möller and M. Zwicker
(Guest Editors)

Volume 29 (2010), Number 2

Scalable Height Field Self-Shadowing

Ville Timonen and JanWesterholm

Åbo Akademi University

Abstract

We present a new method suitable for general purpose graphics processing units to render self-shadows on dy-

namic height fields under dynamic light environments in real-time. Visibility for each point in the height field is

determined as the exact horizon for a set of azimuthal directions in time linear in height field size and the num-

ber of directions. The surface is shaded using the horizon information and a high-resolution light environment

extracted on-line from a high dynamic range cube map, allowing for detailed extended shadows. The desired

accuracy for any geometric content and lighting complexity can be matched by choosing a suitable number of

azimuthal directions. Our method is able to represent arbitrary features of both high- and low-frequency, unifying

hard and soft shadowing. We achieve 23 fps on 1024×1024 height fields with 64 azimuthal directions under a

256×64 environment lighting on an Nvidia GTX 280 GPU.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computer Graphics—
Color, shading, shadowing, and texture

1. Introduction

Shadowing is a major contributor to photorealism in com-
puter graphics giving important cues about objects and their
environment. Without shadows it is often hard to perceive
the shapes of objects or their relative position and magni-
tude. Hard shadows communicate the exact shape while soft
shadows convey distance; a shadow softens gradually as the
distance from the caster increases. Without shadows also
light sources — their distribution, size, and intensity — be-
come ambiguous. For example, in the cathedral environment
of the first row in Figure 9, it can be seen from the shadows
that there are multiple small openings from which light en-
ters, while in Figure 10, the elevation and the size of the
orange light source can be inferred from the shadows.

In this article we provide a method for general self-
shadowing on height field geometry under complex light-
ing environments. The method takes a height map and an
environment light map as input, and produces a color map
describing output radiance of the height field. The surface is
assumed to exhibit Lambertian reflectance under direct light-
ing.

Height fields describe geometry by defining the elevation
of a plane as a function of N×N surface coordinates. This
allows the geometry to be stored into a scalar 2D texture, and

accessed efficiently using graphics hardware. The geometric
content of an N2 size height field can be represented by a
polygon mesh of 2(N−1)2 triangles. Our method represents
(infinitely distant) input lighting as a function of elevation
and azimuthal angles. This function can be computed online
from cube maps.

GPGPU (general-purpose computation on graphics pro-
cessing unit) technology allows a more flexible usage of
graphics hardware by providing direct access to computing
resources. The suitability of GPGPU for raster graphics is
discussed in [Lef07]. We have decided to use CUDA [Hal08]
and OpenGL for the implementation of our method.

As our primary contribution we present a new algorithm
which by utilizing coherency between adjacent samples in
the height field along an azimuthal direction is able to cal-
culate the horizon angles for all the points in any given di-
rection in an operation that has linear time complexity in the
height field size. The horizon angles are obtained losslessly,
i.e., every height field value is taken into consideration in
the given direction. Therefore the algorithm can accurately
shadow height fields of arbitrary geometric content: sharp
edges, thin and tall features, and high and low frequency de-
tails with a stable level of performance, implying scalability.

We also present a robust analytically defined model for

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.
Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and
350 Main Street, Malden, MA 02148, USA.

DOI: 10.1111/j.1467-8659.2009.01642.x

723

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

direct lighting that utilizes the previously generated horizon
information. It requires a precalculation phase which is fast
and can be executed for every frame. The lighting evalu-
ation is performed for each height field point in each az-
imuthal direction, thus taking a time linear in the height field
size and in the number of azimuthal directions. The lighting
model is capable of capturing small point lights, area lights,
and arbitrary light environments with high precision. Input
lighting can be specified as HDR (high dynamic range) cube
maps, which can be rendered or animated on-the-fly. There
is also no need for separate representations for low and high
frequency light sources, nor has lighting environment com-
plexity any effect on performance. Figure 10 demonstrates
a high-resolution height field with shadowing accuracy not
previously achieved in real-time.

2. Related work

Height field self-visibility can be determined by the horizon
silhouette at each point in the field for a set of azimuthal di-
rections. Horizon mapping [Max88] utilizes this observation
to shadow bump-mapped surfaces, and it has also been used
to shadow static height fields in real-time [SC00]. Methods
which consider all points in the height field as occluders for
one receiver point — not only the ones lying in discrete az-
imuthal directions — also exist [Ste98], but they are unsuit-
able for real-time applications.

Recently, real-time methods for dynamic height fields
have been proposed [SN08] [NS09] as well. These meth-
ods generate the horizon information on-line by sampling
the height field in azimuthal directions for each point sep-
arately to find the dominant occluder. For a height field of
size N2, this is an O(N3) operation for one azimuthal direc-
tion if all height field points along the direction are consid-
ered for each receiver point. To diminish the sampling load,
multiple resolutions of the height field (a multi-resolution
height pyramid) are used to satisfy sampling at different dis-
tances from the receiver. This approximation is suitable for
producing soft shadows, but can not produce high-resolution
shadows that extend far from the caster. Our method ex-
tracts the exact horizon in lesser time complexity,O(N2), for
any given azimuthal direction, and therefore is able to cast
extended high-resolution shadows while retaining high per-
formance. [SN08] and [NS09] use low-order (4th) spherical
harmonics — that can be represented by only 16 coefficients
— to model input lighting and occlusion, which is suitable
for soft-shadowing but incapable of capturing sharp shadows
or complex light environments. We model input lighting as a
high-resolution environment, which may contain both high-
and low-frequency features.

Methods based on calculating ambient occlusion are
widely used to render soft-shadowing effects on objects
[Bun05] [KL05]. These methods usually approximate the
geometry surrounding the receiver to calculate the propor-
tion of the visible environment. A family of ambient oc-

clusion methods approximate occlusion in image or screen
space [BSD08] [DBS08] [Mit07] [SA07] [BS09] by treating
the depth buffer as a height field. As the geometry visible
in the depth buffer is a subset of the total affecting geome-
try, and samples far away from the receiver are unlikely to
represent continuous geometry, these methods can only cal-
culate a local approximation of the occlusion by sampling
near the receiver. Screen space ambient occlusion has also
been extended to render more complex lighting effects, such
as indirect illumination and directional lighting [RGS09].

Shadow mapping [Wil78] produces hard shadows from
objects by comparing receiver distance from the light and
viewer point of view. Although originally used to render
shadows from point lights, methods [HLHS03] exist for soft-
ening the shadows. These methods however require one pass
for each light, and become unsuitable for real-time appli-
cations under complex light environments. To render shad-
ows under light environments, [ADM∗08] decomposes a
cube environment map into multiple light sources, generates
shadow maps for each of these using a fast algorithm, and
fuses the results. While this is suitable for arbitrary polygon
meshes, our method achieves faster performance per amount
of geometry and higher resolution shadows for complex light
environments also extracted from cube maps, but is special-
ized to height field geometry.

Height field geometry is usually rendered using two types
of methods. Displacement mapping methods render the
height field as a grid of polygons whose z-components are
displaced according to their height value. Relief mapping
methods render usually only one quad for a surface, and use
iterative algorithms in fragment programs to find the first
intersection between the viewing ray and the height field.
Displacement mapping methods are sensitive to the amount
of geometry, whereas relief mapping methods are sensitive
to the output image size. A review of these methods is pre-
sented in [SKU08]. Relief mapping methods can also render
hard shadows by determining if a light source is occluded
by the height field by searching for an intersection between
the height field and the light source. In [Tat06] this is ex-
tended to produce approximate soft shadows for area lights.
Shadowing light environments using these methods would
require an occlusion search for each light, and without op-
timizations such as using a height pyramid this would have
worse performance than in [SN08].

3. Summary of core ideas

The problem setting of height field self-shadowing is as fol-
lows. We would like to know the horizon for each point in
the height field as a function of azimuthal direction, in or-
der to determine the amount of light coming from the envi-
ronment. One way to approximate this is to determine the
horizon for a set of discrete azimuthal (with respect to the
height field plane) directions. Therefore, for each point in
the height field, and for each azimuthal direction from that

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

724

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

point, we need to find the point that occludes the horizon the
most. Intuitively, the problem can be thought of as standing
at each point in the height field, turning around 360 degrees,
and finding the edge of the sky. What makes this computa-
tionally challenging is the fact that the highest horizon can be
cast by any point in the azimuthal plane (the plane perpen-
dicular to the height field’s ground plane oriented towards
the azimuthal direction).

We present a solution to this problem by describing, in
Section 4, a method for traversing the height field in a way
that facilitates very efficient occluder extraction. The oc-
cluder extraction is described in detail in Section 5. What
is new in our approach is the linear-time algorithm that is
able to find the horizon both more accurately and an order of
magnitude faster than before. We demonstrate its efficiency
on present day GPGPUs.

We use CUDA terminology [NVI09b] for the different
types of memory and concepts such as threads and kernels.
The key idea in our method is to use threads to calculate
horizons for whole lines of height field points instead of cal-
culating them independently for each one. Each thread keeps
a robust representation of the height samples it has processed
so far along the line in a convex hull subset. This representa-
tion can be incrementally updated and used to extract hori-
zon angles in such a way that the total time complexity for
processing a line of n samples is O(n). There are no approx-
imations involved in determining the horizon angle except
those coming from the inherent precision of the data types
used. We are not aware of this method having been intro-
duced in a field outside computer graphics before.

A practical use for this horizon information is to calculate
the amount of incident light a point on the surface receives
from its environment. As the second part of our contribution,
in Section 6, we describe a model for direct environment
lighting that features unbounded accuracy and can therefore
capture the full detail of the generated self-shadowing in-
formation. The lighting model is derived from an analyti-
cal definition, first for uniform ambient light environments.
We then extend the concept to precalculate arbitrary environ-
ment lighting into a 2D table that can be indexed by normal
and horizon angles during evaluation. The table represents
accumulated incident light weighed by the angle of the sur-
face normal’s projection to the azimuthal plane, and limited
by the horizon angle. The final lighting can then be accu-
rately evaluated by multiplying a sample from this table by
the length of the projected normal. The precalculation phase
is fast and accepts cube maps as input.

We finish the paper by presenting results of performance,
scalability, and shadowing accuracy. We are able to extract
occluders for dynamic high-resolution height fields, and uti-
lize this information to light the surface from dynamic high-
resolution environment light maps in real-time.

4. Computation framework

Graphics APIs offer programmability of the hardware by al-
lowing the application to supply its own programs for spe-
cific stages of the rendering pipeline. Because rasterisation
is not currently exposed to the application, a fragment pro-
gram can output only one value to each output buffer into
a predefined position. Our method relies on each calcula-
tion outputting a series of values into different positions in
the output buffer, and is therefore an unsuitable candidate
for a fragment program. This is the main reason we decided
to implement our algorithm using GPGPU technology. In
this chapter we describe the rasterisation used and its thread
topology.

A height field describes a 2-dimensional surface in 3 di-
mensions, (x,y,h(x,y)), where h is given at discrete coor-
dinates, i.e. as a height map. By describing the surface this
way, the geometry along a straight line in the (x,y) plane can
be traversed by sampling the height function at correspond-
ing points. To sample the height function, we use bi-linear
filtering [NVI09b] provided by graphics hardware.

We determine the occlusion as the horizon angle from
zenith at each height field point in discrete azimuthal di-
rections. The horizon is determined by another point in the
azimuthal direction whose height-to-distance ratio (slope) is
the highest as measured from the receiver point. Instead of
extracting horizon angles independently for each height field
point the height field is marched along the azimuthal direc-
tions in parallel lines (Figure 2). An unfinished occlusion
sweep for one azimuthal direction is shown in Figure 3.

For a height field of size N×N and for one azimuthal di-
rection, between N and

√
2N lines are processed, one thread

for each line. A thread steps through 1 . . .
√
2N height sam-

ples along its path, so that a total of N2 evenly spaced sam-
ples are processed for the direction, covering the height field.
Each thread is responsible for keeping a representation of the
geometry along the path up to the latest sample. From this
data, the thread decides for each new height sample a hori-
zon angle backwards along its path, as illustrated in Figure
1.

Figure 1: Each thread supplies a horizon value from its in-

ternal representation of the height function for each height

sample in its path.

As it is critical for the performance of current graph-

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

725

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

ics hardware to coalesce writes into larger transactions
[NVI09b], the output values are written to a buffer in such
a way that threads are axis-aligned and write into consecu-
tive memory locations, as demonstrated in Figure 2. For an
N×N source height field, output buffers are

√
2N×

√
2N

in size, and they have to be rotated back when fusing the
results.

Figure 2: For each azimuthal direction, N . . .
√
2N threads

step through 1 . . .
√
2N samples to cover a height field of res-

olution N2 and write the results to an aligned output buffer.

Figure 3: Parallel threads have extracted the horizon angles

for roughly half of their path during one azimuthal sweep.

The full result is in Figure 5.

5. Occlusion extraction

The purpose of the occlusion extraction stage is to extract
horizon angles for height samples efficiently and correctly.
This process is done in threads that map to lines in the height
field. A thread steps along the line one height sample at a
time, calculates the horizon angle for each consecutive sam-
ple, and writes the results to consecutive lines in the output
buffer. The threads keep a robust representation of the height
function along the line in memory from which the dominant
occluder is deduced. Each new sample is a potential occluder

for future samples and is therefore always initially included
in this representation.

The dominant occluder for an arbitrary new sample is one
from the convex hull subset of previous samples. Moreover,
elements of the convex hull can have a direct line of sight
only to neighboring elements. Therefore, when the new sam-
ple is made part of the convex hull set, its horizon angle can
be deduced directly from the previous element, as illustrated
in Figure 4.

Figure 4: The horizon angle for a sample is determined by

the previous occluder in the convex hull set marked by •.

We can also state this formally. When sorted by distance,
the convex hull set can be defined as

hn−hn+i

dn−dn+i
≥ hm−hm+ j

dm−dm+ j
, (1)

n≤ m

n+ i≤ m+ j

where for occluder of index k, hk is its height and dk its
distance along the line. From this definition we obtain the
largest occlusion for an element of index n as

max
i∈[1,n]

(
hn−i−hn

dn−i−dn

)
=

hn−1−hn

dn−1−dn
(2)

In computational geometry, algorithms for the efficient
construction of convex hulls have been studied in [Gra72]
and [Mel87]. We can exploit the incremental nature of our
method and the structure of the height field geometry to
construct a simple linear-time algorithm to process a line of
height samples.

For simplicity we implement the convex hull set here as
a stack. To retain a valid convex hull when incrementally
adding occluders, the stack has to be popped until Equation
1 holds for the last and the new element. Therefore adding
a new element while retaining convexity, and finding the oc-
cluder casting the smallest horizon angle on the new element
are achieved with the same operation. A pseudo code algo-
rithm of this operation is shown in Algorithm 1.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

726

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

Algorithm 1 Processing a new height map sample new

v1← VECTOR(peek1→ new)
while size > 1 do

v2← VECTOR(peek2→ new)
if h(v2)d(v1)≥ h(v1)d(v2) then

v1← v2
pop

else

break

end if

end while

push(new)

return π
2 − tan−1 h(v1)

d(v1)

Pop and push are standard stack operations, peek1 returns
the last element without modifying the stack, and peek2 re-
turns the second to last. The inverse tangent can be effi-
ciently calculated using [Has53] as introduced in [SN08],
which requires only one floating point division and two com-
putationally light branches.

For a thread processing N elements, there will be exactly
N pushes on the stack and less than N pops. One iteration
performs n+1 comparison operations for n pops, and there-
fore the total number of comparisons for an entire thread is
at most 2N, yielding a total time complexity of O(N). This
property of the algorithm gives it its desired performance
charasteristics. Another desired feature of the algorithm is
that it does not skip, or use an approximation for, even dis-
tant occluders, and can return horizon angles in the full range
of 0 . . .π.

6. Lighting

As it is possible to extract high-resolution horizon maps us-
ing the algorithms described in Sections 4 and 5, it is useful
to have a scalable lighting model capable of representing the
full resolution. As our second contribution we first present
incident lighting in an analytical form, and then show how it
can be efficiently calculated in real-time for uniform ambient
lighting and for arbitrary light environments.

We first recapitulate the rendering equation [Kaj86] in
this context. We assume the surfaces to exhibit Lambertian
reflectance and to emit no radiance. While our method is
not restricted to Lambertian surfaces, its suitability for other
BRDFs would warrant a separate investigation and is beyond
the scope of this paper. Lighting calculations are performed
in the coordinate system of the height field plane, where the
equation for output radiance becomes

Lo(Li,o,~N,x) =
1
π

Z

Ω
Li(~e)o(x,~e)(~N ·~e)d~e, (3)

~N ·~e≥ 0

The integral extends over the hemisphere around the point

x with the normal ~N. Li is the input radiance as a function of
direction~e, and o is a binary visibility term as a function of
the point x and direction~e.

If the integral is discretized into n equally sized azimuthal
swaths, it can be expressed as

Lo(Li,o
′,~N,x) =

1
π

n−1

∑
k=0

Z

π
n
(2k+1)

π
n
(2k−1)

Z θk

0
Li(~e)(~N ·~e)sinθdθdφ,

θk =min

(
o
′(x,k), tan−1

(
~Nxcos(

π
n 2k)+~Nysin(

π
n 2k)

~Nz

))

(4)

The angle θk is the horizon angle o
′(x,k) from zenith for the

azimuthal direction k at x clamped to satisfy ~N ·~e ≥ 0. The
clamping is evaluated at φ = π

n 2k.

6.1. Uniform ambient lighting

Solving the integrals in Equation 4 with ~e expressed in
spherical coordinates and assuming constant input lighting
(Li = c) gives

Lo(o
′,~N,x) = c

~Nz

n

n−1

∑
k=0

sin
2θk+ c

sin(π
n)

π

n−1

∑
k=0

(5)

((
θk−

1
2
sin(2θk)

)(
~Nxcos

(π

n
2k
)
+~Nysin

(π

n
2k
)))

As cos
(

π
n 2k
)
and sin

(
π
n 2k
)
remain constant for one az-

imuthal direction throughout the height field, only sin2θk
and sin(2θk) will have to be calculated for each height field
point. Also, if the inverse tangent in Algorithm 1 is calcu-
lated after clamping the slope by the normal, Equations 4
and 5 can be evaluated with three floating point divisions and
less than ten multiplications and additions. Figure 5 features
uniform lighting.

Figure 5: A 10242 height field under uniform ambient light-

ing (φN = 64, 24 fps)

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

727

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

6.2. Arbitrary light environments

To represent arbitrary, infinitely distant, light environments
we can precalculate lighting for each azimuthal direction for
a specific Li as a function of ~N and o′(x,k).

If ~N is decomposed into two orthogonal components, one
perpendicular to~e, the remaining component ~Np is the only
contributor to the dot product ~N ·~e. Furthermore, the length
of the component can be dissociated from the precalcu-
lated light function Lp, allowing an efficient definition of
Lkp(θn,θh) as a function of the normal angle θn and the hori-
zon angle θh towards the azimuthal direction k, as illustrated
in Figure 6.

Figure 6: When the normal ~N is projected onto the az-

imuthal plane, lighting can be tabulated as a function of the

horizon angle θh and the angle θn for the projected normal.

The lighting evaluation becomes

Lo(Lp,o
′,~N,x) =

n−1

∑
k=0

(
|~Np|Lkp

(
θkn,o

′(x,k)
))

(6)

Precalculation of Lp for direction k becomes

L
k
p(θn,θh) =

1
π

Z

π
n
(2k+1)

π
n
(2k−1)

Z min(θn+
π
2 ,θh)

0
(7)

Li(θ,φ)sinθcos(θ−θn)dθdφ

If the same environment map sample for a specific θ is used
throughout one k, i.e. Li(θ,φ) = Li(θ,k), Equation 5 can be
incrementally used to compute Lp in a separate pass.

As for the resolutions of θn and θh in Lp, the horizon angle
θh directly defines the resolution of the light environment in
conjunction with the azimuthal direction count φN . The res-
olution of θn on the other hand should be selected to be as
low as possible while retaining an acceptable level of error
in the result. The resolution only affects the weighing of the
environment samples and the cutoff horizon angle induced
by ~N ·~e ≥ 0. Also, the results from consecutive normal an-
gles can be linearly interpolated during the sampling of Lp.

Figure 7 shows different normal angle resolutions and the
corresponding error. A resolution as low as 8 usually pro-
duces results indistinguishable to the naked eye from higher
resolutions, and a resolution of 16 is a safe choice without

losing much of the benefit offered by texture caching. We
actually use uneven resolutions (7, 15, 31. . .) in order to pro-
duce exact results for normals that point directly upwards
(0,0,1).

Figure 7: Error introduced by lowering the normal angle

resolution from a reference 256 to 16 (middle) and 8 (right)

on a height field shown to the left, multiplied by 50. The av-

erage and maximum errors for resolution 8 are 0.16% and

1.66%, and for resolution 16 0.03% and 0.42% respectively.

Figure 8 demonstrates the ability of this light model to
represent both point and area light sources.

7. Implementation

Our implementation runs entirely on the GPU and is based
on OpenGL 3 and CUDA 2. Various implementational al-
ternatives were tested and the ones described here produced
the best results in our environment. The APIs and the perfor-
mance characteristics of their implementations are subject to
change.

The algorithm input consists of one or two OpenGL side
PBOs (pixel buffer objects): a floating point height map and
(if environment lighting is used) a floating point RGB cube
map. The output is either a monochromatic or an RGB (for
environment lighting) floating point OpenGL texture. The
entire pipeline uses HDR (high dynamic range) values.

The algorithm can be broken down into the following
stages that are executed for each frame.

Preprocessing

The source height field and the environment cube light map
are passed as 32 bit floating point OpenGL PBOs to CUDA,
and further copied to CUDA arrays for bi-linearly filtered
sampling. Surface normals are created from the height data
by summing unnormalized normals from each of the four
quads connected to the height sample. Not normalizing the
quadrants produces less artifacts on very sharp edges. After
the summing, the normals are normalized and stored as per-
component 8 bit fixed points, and bi-linearly filtered during
sampling. Lp is generated as described in Section 6 using 32
bit floating point color components. The resulting light table
is bi-linearly filtered during sampling.

Occlusion extraction

The height field is swept through for each azimuthal direc-
tion as described in Section 4. Occluders are stored in lo-
cal memory (off-chip) in preallocated arrays that are large

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

728

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

Figure 8: Differently sized circular light sources with corresponding lighting cube maps on the top. (θN = 256,φN = 128)

enough for no overflow to occur using half precision (16 bit)
floats for their height and unsigned fixed point (16 bit) for
their distance, fitting an occluder into 32 bits. Threads write
32 bits of data to the output buffer every fourth iteration con-
sisting of four 8 bit unsigned fixed point horizon angle val-
ues. When uniform ambient lighting is used, light values are
computed directly instead.

Packing and lighting

Before passing the data for final blending to OpenGL, four
(φ, φ+ π

2 , φ+ π, and φ+ 3π
2) azimuthal directions are lin-

early combined for reduced overhead during PBO passing
between OpenGL and CUDA. As the horizon data is 8 bit
and threads process 32 bit elements for optimal efficiency,
shared memory communication between threads is required.
Communication is also required for efficient texture trans-
posing. If environment lighting is used the lighting calcula-
tion is also carried out in this stage for reduced computation.
The reduction is made possible by sharing one normal for the
four azimuthal directions, producing sampling coordinates
for Lp with less operations. The resulting lighting is stored
using OpenGL compatible 10+11+11 bit floating point BGR
components.

Fusing of intermediate results

The previously generated intermediate results are indepen-
dent and can be fetched in multiple passes if video memory
reservation is an issue. The intermediate results are copied
into textures which are rotated and blended in a 32+32+32
bit floating point RGB frame buffer to produce the final re-
sult in OpenGL.

When constructing the thread blocks for occlusion ex-
traction, at least two aspects should be considered. Firstly,
the heads of the threads should be aligned to form groups
that write consecutive memory addresses (share a common
first row in the output buffer) to allow write coalescing. Sec-
ondly, the threads within the whole thread block should have
similar spans for maximum utilization of the SIMT (single-
instruction multiple-thread) hardware. Processing multiple
azimuthal directions in one kernel invocation increases the
amount of available threads with similar spans. However,
packing threads of equal span will interfere with write co-
alescing, since threads with exactly the same span are bound
to be either at the other end of the texture, or belong to a

different direction. As the amount of threads necessary for
efficient memory coalescing is lower than the optimal size
of a thread block, these two goals are not mutually exclu-
sive.

Although having similar spans, adjacent threads may still
not execute each iteration of Algorithm 1 synchronously due
to different occluder stack contents. Furthermore, when the
occluder stacks are of different sizes during runtime, mem-
ory coalescing cannot occur. Fortunately, the last two oc-
cluders in the stack can be stored as separate variables (in
registers) saving two memory accesses that would otherwise
be required in each iteration (when size > 1), diminishing
the memory coalescing problem and improving the overall
performance.

In order to estimate the memory consumption of the oc-
cluder stacks we note that the maximum size that a con-
vex hull may have in a N ×N height field is

√
2N (e.g. a

half sphere extending from corner to corner of the height
field). Preallocating arrays according to this observation
would yield an occluder storage equal to the output buffer
(
√
2N×

√
2N elements) in size. In practice, however, CUDA

runtime only has to allocate space for threads that are sched-
uled to run, which is typically less than the total number of
threads. Also, most height fields require convex hulls of only
fraction of the maximum size. For instance, the actual con-
vex hull sizes in Figure 9 peaked at 3% of the theoretical
maximum (43 elements). According to our benchmarks, the
size of the occluder arrays has a negligible effect on perfor-
mance, excluding that coming indirectly from memory con-
sumption (e.g. by affecting the number of passes required).

8. Results

The performance of our algorithm is directly related to the
height field size and to the number of azimuthal directions,
but is rather insensitive to geometric content. As the exact
horizon is extracted for each height field point for all az-
imuthal directions, there are no other tunable parameters in-
volved which trade the accuracy of visibility calculations for
speed.

Figure 9 illustrates the effect of azimuthal direction count

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

729

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

Table 1: Performance measurements

HF res.
FPS for uniform, environment lighting

φN = 16 32 64 128 256
Nvidia GTX 280 (1 GB)

5122 160, 114 118, 87 74, 61 44, 38 24, 22
10242 76, 62 45, 39 24, 23 12, 12 6.4, 6.3
20482 24, 24 13, 13 6.6, 6.7 3.4, 3.4 1.7, 1.7
40962 5.4, 6.8 2.8, 3.5 1.4, 1.8 0.7, 0.9 0.4, 0.5

Nvidia 8800 GTS (512 MB)

5122 110, 108 62, 68 33, 38 17, 20 8.6, 10
10242 33, 38 17, 21 8.8, 11 4.4, 5.5 2.2, 2.8
20482 8.8, 10 4.6, 5.4 2.3, 2.8 1.2, 1.4 0.6, 0.7

Table 2: Execution time distribution

Stage
Proportion

φN = 16 128
Env. lighting

Normals and light precalculation 15% 3%
Occluder extraction 38% 46%
Packing and lighting 20% 32%
OpenGL (incl. CUDA interop.) 27% 19%

Uniform
Normals 9% 1%
Occluder extraction and lighting 65% 76%
Packing 8% 11%
OpenGL (incl. CUDA interop.) 18% 12%

on the quality of rendering. Banding artefacts due to az-
imuthal undersampling might appear when a low number of
directions is used. Uneven complex geometry helps to hide
banding, but a height field with sharp edges and planarity
might require up to 128 azimuthal directions before very
good results are obtained. Currently, the suitable number of
azimuthal directions has to be selected manually.

Table 1 lists frame rates for combinations of height field
resolutions and azimuthal directions. Height field content is
shown in Figure 9 and the environment lighting resolutions
are 256 (θN) times the number of azimuthal directions (φN).
All stages listed in Section 7 were included for each frame.
Table 2 shows typical execution time distributions between
the different stages. A 10242 height field (Figure 9) was used
for the tests, and the data was gathered using CUDA Profiler
[NVI09a]. The execution stages do not overlap in time.

The precalculation of normal vectors and the light func-
tion for environment lighting execute in approximately con-
stant time for any number of azimuthal directions and any
height field size, and therefore consume a larger portion of
the execution time when the number of azimuthal directions
is low. It is also worth noting that these precalculation ker-
nels take significantly longer CPU time than GPU time, in-
dicating relatively high overhead in data copying and kernel

invocation. Also, binding OpenGL PBO resources in CUDA
has some overhead — included in the OpenGL phase —
that grows proportionally larger with a lower number of az-
imuthal directions.

As occluder extraction is a problem that has many uses —
and even in this context can be used with other lighting meth-
ods — observing its performance independently can be use-
ful. Extracting only the horizon angles for one azimuthal di-
rection on each point of a 10242 height field is accomplished
in 0.30 ms (>3300 Hz), when measured using φN = 128.

Figure 10: A fractal terrain of size 20482 (8M triangles) lit

by a single 256×16 environment at 20 Hz.

9. Conclusions

We have presented a new real-time method to render self-
shadows on dynamic height fields under dynamic light en-
vironments. Its computation is parallel and suitable for cur-
rent GPGPUs. Our method determines visibility as the ex-
act horizon in a set of azimuthal directions in time linear in
height field size. This allows scaling to large height fields
with arbitrary geometric content. We also presented a light-
ing model capable of representing complex high-resolution
light environments extracted on-line from HDR cube maps,
allowing for accurate real-time direct lighting of height
fields. Our method is faster and more general than previous
methods.

Our method could also be used to calculate ambient
occlusion or direct lighting in offline rendered graphics
which require greater accuracy and scaling. For example,
a 4096×4096 height field (34M triangles) can be lit from
1024 azimuthal directions in 8 seconds, its computation fit-
ting into the video memory of commodity graphics cards,
and the result being comparable to exhaustive ray-tracing.

Acknowledgements

We would like to thank Dr Jukka Arvo for his fruitful comments.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

730

V. Timonen & J. Westerholm / Scalable Height Field Self-Shadowing

Figure 9: Increasing azimuthal directions yields smoother results, but its effect depends on the geometric content. On the left

are two light environments [Deb98] upon the 10242 height field, θN = 256, and the number of azimuthal directions with the

corresponding frame rates from left to right are: 16 (62 Hz), 32 (39 Hz), 64 (23 Hz), 128 (12 Hz), and 256 (6.3 Hz).

References

[ADM∗08] ANNEN T., DONG Z., MERTENS T., BEKAERT P.,
SEIDEL H.-P., KAUTZ J.: Real-time, all-frequency shadows in
dynamic scenes. In SIGGRAPH ’08: ACM SIGGRAPH 2008 pa-

pers (New York, NY, USA, 2008), ACM, pp. 1–8.

[BS09] BAVOIL L., SAINZ M.: Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH ’09: SIGGRAPH

2009: Talks (New York, NY, USA, 2009), ACM, pp. 1–1.

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08: ACM SIG-

GRAPH 2008 talks (New York, NY, USA, 2008), ACM, pp. 1–1.

[Bun05] BUNNELL M.: Dynamic ambient occlusion and indirect

lighting. Addison-Weseley Professional, 2005, pp. 223–233.

[DBS08] DIMITROV R., BAVOIL L., SAINZ M.: Horizon-split
ambient occlusion. In I3D ’08: Proceedings of the 2008 sym-

posium on Interactive 3D graphics and games (New York, NY,
USA, 2008), ACM, pp. 1–1.

[Deb98] DEBEVEC P.: Rendering synthetic objects into real
scenes: bridging traditional and image-based graphics with
global illumination and high dynamic range photography. In Pro-
ceedings SIGGRAPH ’98 (New York, NY, USA, 1998), ACM,
pp. 189–198.

[Gra72] GRAHAM R.: An efficient algorithm for determining the
convex hull of a finite planar set. Inf. Process. Lett. 1 (1972),
132–133.

[Hal08] HALFHILL T. R.: Parallel Processing with CUDA. Mi-

croprocessor Report (January 2008).

[Has53] HASTINGS C.: Approximation theory, note 143. Math.

Tables Aids Comput 68, 6 (1953).

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH
N., SILLION F.: A survey of real-time soft shadows algorithms,
dec 2003.

[Kaj86] KAJIYA J. T.: The rendering equation. In Proceedings

SIGGRAPH ’86 (New York, NY, USA, 1986), ACM, pp. 143–
150.

[KL05] KONTKANEN J., LAINE S.: Ambient occlusion fields. In
Proceedings of ACM SIGGRAPH 2005 Symposium on Interac-

tive 3D Graphics and Games (2005), ACM Press, pp. 41–48.

[Lef07] LEFOHN A.: Gpgpu for raster graphics. In SIGGRAPH

’07: ACM SIGGRAPH 2007 courses (New York, NY, USA,
2007), ACM, p. 11.

[Max88] MAX N.: Horizon mapping: shadows for bump-mapped
surfaces. The Visual Computer 4, 2 (Mar. 1988), 109–117.

[Mel87] MELKMAN A.: On-line construction of the convex hull
of a simple polygon. Inf. Process. Lett. 25 (1987), 11–12.

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In SIG-

GRAPH ’07: ACM SIGGRAPH 2007 courses (New York, NY,
USA, 2007), ACM, pp. 97–121.

[NS09] NOWROUZEZAHRAI D., SNYDER J.: Fast global illu-
mination on dynamic height fields. Computer Graphics Forum:

Eurographics Symposium on Rendering (June 2009).

[NVI09a] NVIDIA CORPORATION: CUDA Profiler. 2009.

[NVI09b] NVIDIA CORPORATION: NVIDIA CUDA Program-

ming Guide 2.3. 2009.

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approxi-
mating dynamic global illumination in image space. In I3D ’09:

Proceedings of the 2009 symposium on Interactive 3D graphics

and games (New York, NY, USA, 2009), ACM, pp. 75–82.

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on gpus. In I3D ’07: Proceedings

of the 2007 symposium on Interactive 3D graphics and games

(New York, NY, USA, 2007), ACM, pp. 73–80.

[SC00] SLOAN P.-P. J., COHEN M. F.: Interactive horizon map-
ping. In Proceedings of the Eurographics Workshop on Ren-

dering Techniques 2000 (London, UK, 2000), Springer-Verlag,
pp. 281–286.

[SKU08] SZIRMAY-KALOS L., UMENHOFFER T.: Displacement
mapping on the gpu — state of the art. vol. 27, pp. 1567–1592.

[SN08] SNYDER J., NOWROUZEZAHRAI D.: Fast soft self-
shadowing on dynamic height fields. Computer Graphics Forum:
Eurographics Symposium on Rendering (June 2008).

[Ste98] STEWART A. J.: Fast horizon computation at all points of
a terrain with visibility and shading applications. IEEE Transac-

tions on Visualization and Computer Graphics 4, 1 (1998), 82–
93.

[Tat06] TATARCHUK N.: Practical parallax occlusion mapping
with approximate soft shadows for detailed surface rendering. In
SIGGRAPH ’06: ACM SIGGRAPH 2006 Courses (New York,
NY, USA, 2006), ACM, pp. 81–112.

[Wil78] WILLIAMS L.: Casting curved shadows on curved sur-
faces. SIGGRAPH Comput. Graph. 12, 3 (1978), 270–274.

c© 2010 The Author(s)
Journal compilation c© 2010 The Eurographics Association and Blackwell Publishing Ltd.

731

Publication P2

Ville Timonen. Low-Complexity Intervisibility in Height Fields. Computer
Graphics Forum, 31(8), pages 2348–2362, 2012. Invited to Eurographics
Conference 2013.

DOI: 10.1111/j.1467-8659.2012.03155.x COMPUTER GRAPHICS forum
Volume 31 (2012), number 8 pp. 2348–2362

Low-Complexity Intervisibility in Height Fields

Ville Timonen

Åbo Akademi University
vtimonen@abo.fi

Abstract
Global illumination systems require intervisibility information between pairs of points in a scene. This visibility
problem is computationally complex, and current interactive implementations for dynamic scenes are limited to
crude approximations or small amounts of geometry. We present a novel algorithm to determine intervisibility from
all points of dynamic height fields as visibility horizons in discrete azimuthal directions. The algorithm determines
accurate visibility along each azimuthal direction in time linear in the number of output visibility horizons. This
is achieved by using a novel visibility structure we call the convex hull tree. The key feature of our algorithm is
its ability to incrementally update the convex hull tree such that at each receiver point only the visible parts of the
height field are traversed. This results in low time complexity; compared to previous work, we achieve two orders
of magnitude reduction in the number of algorithm iterations and a speedup of 2.4 to 41 on 10242 height fields,
depending on geometric content.

Keywords: height field, intervisibility, global illumination

ACM CCS: I.3.7 [Computer Graphics]: Computer Graphics—Color, shading, shadowing, and texture

1. Introduction

The two major applications for visibility algorithms in com-
puter graphics rendering are geometry culling and lighting.
Firstly, culling is used to accelerate rendering by determin-
ing which geometry should not be sent down the rendering
pipeline, i.e. which geometry is invisible from the viewer.
Secondly, lighting algorithms need to know the visibility of
light sources from each illuminated receiver point. As gener-
ally all scene geometry acts as light sources, global illumina-
tion algorithms need to determine the visibility of the whole
scene from each receiver point. This problem is similar to
that in geometry culling, except orders of magnitude more
complex, as visibility from millions of receiver points needs
to be determined. The problem is largely solved for static
geometry as most of the computation can be performed as a
pre-pass, but dynamic geometry remains an open problem.

In this paper we present a method to determine intervisibil-
ity of height field geometry. Height maps describe geometry
by defining the elevation of a plane as a function of N ×N

surface coordinates. They can be used as standalone objects

or to describe meso- and micro-structure on the surfaces of a
larger-scale object. Another recently popular application for
height field algorithms is producing lighting effects in screen
space, where the depth buffer of a rendered scene is treated
as a height field with effects applied in post-processing. For
non-graphics related applications of height field visibility
algorithms, see the survey [Nag94].

Current interactive height field intervisibility methods de-
termine approximate or local visibility in order to produce
effects such as soft global illumination [NS09] or color bleed-
ing [RGS09]. Current methods are limited to local, approx-
imate, or noisy effects mainly due to poor scaling of visi-
bility calculations. The approach that current methods use
involves sampling, for each receiver independently, the sur-
rounding height field where in order to test n sender points for
one receiver point, n iterations are performed. Intervisibility
searches based on this approach are variations of what we in
this paper will call the naı̈ve method: for each receiver point
K azimuthal directions are chosen and, for each direction,
the height field is traversed outwards from the receiver one
unit length step at a time.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics
Association and Blackwell Publishing Ltd. Published by
Blackwell Publishing, 9600 Garsington Road, Oxford OX4
2DQ, UK and 350 Main Street, Malden, MA 02148, USA. 2348

V. Timonen/Low-Complexity Intervisibility in Height Fields 2349

Table 1: The average number of visible points per direction for the
10242 height fields in Figure 7.

Height field Visible points Visible/total

Fractal terrain 27.1 5.6 %
Brick surface 8.94 1.8 %
Sine grid 22.8 4.7 %
Blocks 5.56 1.1 %

The main problem in the naı̈ve method is that it scales
linearly with respect to the search distance, while visibility
in all practical height fields should scale sub-linearly. In
Table 1 we counted the average number of visible points
for a single azimuthal direction for different types of height
fields (N = 1024) and compared it to the number of evenly
spaced points that were tested for visibility (roughly N/2).
In Section 6, we will measure the scaling to be between
O(N 0.01) and O(N 0.65).

In this paper we present a new way of calculating visibility
in height fields. The key feature of our method is its ability to
traverse only the visible geometry by effectively culling the
non-visible geometry. Another advantage of our method is
that it produces a more compact description of the visibility
than a simple enumeration of the visible points: for each
receiver point we determine a list of local visibility horizons
where two consecutive horizons always enclose all adjacent
visible height field points. Our algorithm runs in time linear
in the number of output visibility horizons and is dependent
on the height field content. Compared to previous algorithms,
we achieve two orders of magnitude reduction in the number
of iterations required to extract accurate intervisibility on
10242 height maps bringing the complexity to manageable
levels, and a speed up of 2.4 to 41 compared to the naı̈ve
method, depending on the height field content.

It can be argued that in rendering there is a trend towards
performing an increasing portion of shading and lighting
as a screen-space pass. It will be interesting to see what
the full potential of such methods are. Current screen-space
methods are not able to effortlessly scale to full illumination
solutions, but rather settle for producing a limited set of
effects that are computationally feasible. While there are
many obstacles to overcome before global illumination with
arbitrary materials and integrated light sources is feasible in
screen-space, our contribution is to overcome the one with
the highest computational complexity: intervisibility.

2. Previous Work

Determining height field intervisibility is essentially a prob-
lem of computational geometry. Finding the visible areas of
a terrain from a single viewpoint [KZ02] [FHT09], a line
[CS89], or a region [BWW05] is a problem extensively re-

searched and largely solved. However, algorithms that find
terrain intervisibility at all surface points are significantly
less studied, and applying single-viewpoint methods to each
height field point is intractable for interactive applications.

Global illumination methods for height fields require in-
tervisibility determination, but unlike our method they so far
exclusively use a scheme where the same visibility search
procedure is performed independently for each height field
point. The naı̈ve approach [CoS95] [SLYY08] is to solve the
visibility in a set of azimuthal directions where each direction
is traversed from the receiver point outwards in unit length
steps, and each time the previous slope maximum is exceeded
the new point is known to be visible from the receiver point.
Our method produces results identical to the naı̈ve method.

The naı̈ve approach can be accelerated by applying level
of detail (LOD) methods: [NS09] generate multiple levels
of detail of the height field and use the lower resolution
levels and sparser sampling when traversing farther from
the receiver, as first introduced in [SN08]. While faster, the
approximated visibility favors using the method only for soft
effects.

Ambient occlusion methods with falloff terms need to
know the distance of occluding geometry and therefore have
to solve the intervisibility problem as well. Screen-space am-
bient occlusion methods [Mit07] [DBS08] approximate local
scene visibility in image-space by treating the depth buffer as
a height field. The same approach has been used to produce
global illumination effects such as color bleeding [RGS09],
which is extended with LOD in [SHR10]. Intervisibility in
these methods is determined from sender and receiver nor-
mals only and any occluding geometry in-between is ignored.
While fast and sufficient for approximate near-field effects,
scaling to far-field is problematic: an occlusion search be-
tween sender and receiver is required as suggested by the
authors of [RGS09], making the intervisibility search the
same as used by the naı̈ve method.

Implementations of the naı̈ve method usually trade band-
ing for noise by randomizing sampling patterns per receiver.
In future work, in Section 10, we discuss ways to apply LOD
and to trade banding for noise with our method as well.

More exotic ways to sample the height field have also been
introduced, such as performing a very sparse randomized oc-
clusion search per pixel and gathering the final occlusion val-
ues from a small neighborhood around a receiver [HBR∗11].
Alternatively, instead of taking simple height samples, line
and area samples can be taken to approximate the overall
occlusion of the near-field geometry [LS10]. While these
methods produce fast results, they don’t scale well to occlu-
sion effects of arbitrary length and are non-trivial to extend
to indirect illumination.

Global illumination methods for generic geometries are di-
verse [DBBS06] and also need to address the intervisibility

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2350 V. Timonen / Low-Complexity Intervisibility in Height Fields

problem. Excluding various approximations, these methods
traverse all scene geometry for each receiver primitive. The
problem then becomes making sure that only the effect of
the frontmost layer around the receiver is accounted for. This
has been tackled in [Bun05] and [DSDD07] by running sev-
eral iterations of the algorithm where each iteration removes
extraneous contribution of the overlapping layers. Another
solution to overcome this problem is to use shadow maps
(see the survey [HLHS03]) to determine the receivers from
the point of view of point light sources. Fast approximate
shadow maps [RGK∗08] [ADM∗08] can be used to make
this approach feasible when many light sources need to be
considered. None of these approaches make use of the char-
acteristics of height field geometry, and their visibility solu-
tions become prohibitively expensive for anything but very
small height fields when accurate results are preferred.

Another common approach to solving visibility of scene
geometry is ray tracing, where visibility is queried by shoot-
ing independent rays from a receiver and determining the
closest geometry the rays intersect. Let K be the number of
azimuthal directions in which rays from each point are cast,
and let pa be the average number of visible height field points
from one receiver point in one azimuthal direction. Then on
an N ×N height field at least N 2Kpa optimally chosen rays
have to be traced to determine intervisibility at the same
accuracy as our method. Not including the complexity of
tracing one ray, this already is higher than the time complex-
ity of our method, O(N 2Kma), where ma ≤ pa denotes the
average number of visibility horizons.

We use a compact way to unambiguously describe intervis-
ibility on a line by local horizons as introduced in [DFM94].
In this model, a local horizon from a viewpoint is defined
at each transition from visibility to invisibility. From local
horizons it is possible to produce the casting set as used in
[NS09], which is the set of points visible from the receiver
point.

Incidentally, it was shown in [TW10] that a visibility hori-
zon is defined by the points of a convex hull, and that a line
sweep algorithm can incrementally determine global visibil-
ity horizons for n points in O(n) time by using a convex
hull stack. In order to determine intervisibility, we extend the
ideas of [TW10]: we track a set of convex hulls instead of
only one and introduce a novel tree structure to hold them.
Through efficient tree update operations, we maintain the
same linear complexity: n local horizons are extracted in
O(n) time.

3. Height Field Processing

In this section we describe the highest level framework of
our method with a focus of the process on the scale of the
whole height field. In Section 4 we describe the process of
solving visibility on the scale of a single line. Section 5 de-
fines in detail the algorithm that is executed for each point

R

Figure 1: For one azimuthal direction, the height field is
processed in parallel lines (left). For each line, the visibility
horizons are extracted backwards along the line for the most
recent step, receptor R (right).

on the line. Section 6 establishes the complexity of the al-
gorithm and analyzes its scaling with respect to the height
field size and content. An implementation on the GPU and
optimizations on the code are covered in Section 7 and the
implementation efficiency with respect to available hardware
resources is discussed in Section 8. Section 9 showcases the
actual performance and Section 10 discusses the accuracy of
our method and ways to utilize the visibility information.

The input to our algorithm is a height map consisting
of a regular grid of N ×N height values. For each height
field point our algorithm determines visibility in K discrete
azimuthal directions by performing K sweeps through the
height field. For each direction φk = k

K
2π, 0 ≤ k < K , the

height field is swept through in parallel lines that are unit
length apart thus calculating the given azimuthal direction
for all height field points in one sweep.

These lines are stepped through one unit length step at a
time, and visibility backwards along the line is determined
for each step in turn, as demonstrated in Figure 1. At each step
lighting contribution is gathered from the visible segments
of the line and the result is written into the sweep’s output
buffer. The output buffers are axis-aligned such that the pro-
cessed lines map to vertical lines in each output buffer, as
demonstrated in Figure 2. As the maximum number of lines
as well as the maximum length of a line in an arbitrary di-
rection can be at most

√
2N , the output buffers are of size√

2N ×√2N .

After the sweeps have been performed, each of the K out-
put buffers contain N 2 result values. Finally, results across
the output buffers are accumulated into a single result buffer
the size of the input height field, N ×N , shown in Figure 2.
At this point visibility of an average of roughly K N

2 height
field samples have been considered for each of the N 2 sam-
pled receptor points. Unlike previous methods, we require
substantially fewer than K N3

2 iterations to achieve this, as
shown later in this paper.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen/Low-Complexity Intervisibility in Height Fields 2351

N

N

2N

√
2N

N

N

Figure 2: Three sweeps (K = 3), denoted by different
colours, are performed over the input height field (left), their
results are written to axis-aligned output buffers (center),
and finally accumulated in the result buffer (right).

4. Line Processing

Visible points of the height field along a line are naturally
grouped into continuous parts. Such a part can only start at a
point in the convex section of the line: when viewed from the
receptor R, the point is a local maximum with neighbors that
are below it. Convex sections are separated from each other
by concave sections, and therefore the line can be split into
strictly alternating convex-concave sections. We call a pair of
convex-concave sections a segment, and use these segments
to determine visibility along a line.

From now on we refer to a height field sample at step i

as point pi , denoting its height by hi and its distance from
the start of the line by di . In this notation p0 is the first point
on the line and pn is the receptor R. When traversing a line,
each point pi is determined to belong to either a convex or a
concave section of the line by the following function:

C(pi) =

⎧⎪⎨
⎪⎩

convex if i = 0 or 2hi > hi−1 + hi+1,

concave if i �= 0 and 2hi < hi−1 + hi+1,

C(pi−1) otherwise (1)

Note that in case the three points pi−1, pi and pi+1 form-
ing a straight line the convexity status is inherited from the
previous point.

The visible segments can be found using local horizons
as demonstrated in Figure 3. The local horizons are lines-of-
sight formed between R and points pR

i on the surface such
that each line-of-sight is locally tangent to the surface at pR

i

and does not intersect the surface between R and pR
i . The

line-of-sight between p0 and R is also a horizon if it does not
intersect the surface.

There are as many local horizons as there are visible seg-
ments along the line, and each horizon lies on the convex

pR
0

pR
1

R

pR
2

Figure 3: The local horizons formed between points pR
i and

R unambiguously describe visible segments (denoted at the
bottom) and the extent of their visibility (the surface in or-
ange) at the receptor R. Convex sections are dark and con-
cave light.

part of a visible segment. The beginning of the visibility is
available as the endpoint of the horizon, pR

i . The end of the
segment’s visibility generally lies between two surface points
and its coordinate is not directly available from the horizons.
Instead, the next horizon (through pR

i+1 and R) intersects the
visible segment exactly at the end of the visibility. The last
visible segment includes R and does not have a following
horizon, in which case the visibility reaches all the way to
pn−1. The least amount of information required to describe
the complete line visibility from R is an array of the unsigned
integer distance values di of pR

i .

In order to iteratively derive the local horizons for each
R (pn) along the line without having to go over points
p0 . . . pn−1 each time, we track a convex hull for each
segment, starting from the beginning of the segment (pj)
and ending in pn as demonstrated in Figure 4. The con-
vex hulls therefore are the groups of points ordered by their
distance:

⎧⎨
⎩pSj

, {j, {ic}, n} ∈ Sj and j < ic < n and

hSj [i] − hSj [i−1]

dSj [i] − dSj [i−1]
>

hSj [i+1] − hSj [i]

dSj [i+1] − dSj [i]

⎫⎬
⎭,

j = 0 or (C(pj) = convex and

C(pj−1) = concave and 0 < j < n)

(2)

In other words, we defined the set of upper convex hulls that
start from the first point in each convex section and end in R.
The first convex section always starts from p0.

Convex hulls are efficient in determining occlusion be-
tween a receiver that is included in the hull and geome-
try behind the hull: points on the hull can have a direct

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2352 V. Timonen / Low-Complexity Intervisibility in Height Fields

54
3

2

1

S1 S2 S3 S4 S5

R

Figure 4: A set of convex hulls (1 . . . 5) are formed from the
convex sections of segments S1 . . . S5 to the receptor R (pn)
at the far right.

line-of-sight only to their neighbors and thus the highest oc-
clusion is cast by the point previous to the receiver in the
hull. The last point of each convex hull defined in Equa-
tion 2 is the receptor R, and the points second to last are pR

i .
Therefore the edges between the last two points of the hulls
are the local horizons for R. Duplicate horizons, however,
emerge from this definition: the convex hull of each invisible
segment produces the same horizon as the convex hull of one
visible segment. This is due to the possibility of convex hulls
sharing points close to R. In fact, the vast majority of the
segments are usually invisible.

To overcome this problem we maintain a convex hull tree
instead of maintaining a separate convex hull for each seg-
ment. Points included in the convex hull tree are the union
of points in the separate convex hulls as defined in Equa-
tion 2. Each separate convex hull is still existent as part of
the convex hull tree and we call such a part a convex hull
path. A path will start from pj (a leaf node of the tree) and
end up in R (the root node). The branches are ordered such
that the first child of a parent is the one farthest away from
the parent or—equivalently—having the highest height of
the children. There are no redundant points in the tree and
the direct children of the root node are exactly the points pR

i .
Therefore, when the convex hull tree is up-to-date, extracting
the local visibility horizons involves nothing more than go-
ing over the children of the root node. Figure 5 demonstrates
a convex hull tree in a fractal terrain height field along one
line.

When a new step along the line is taken, a new R is
introduced and becomes the new root of the tree. The core
algorithm for determining visibility using the convex hull
tree therefore adjusts the tree after the introduction of a new
root such that each convex hull path is valid (convex). This
algorithm is recursive in nature and described next.

R

Figure 5: A convex hull tree along one line during a sweep
on a fractal terrain. Green links are shared by multiple convex
hull paths.

5. Point Processing in the Convex Hull Tree

In this section we describe how a new point is added to the
present convex hull tree. The input of this phase is the next
height field point pn along the line being traversed. The point
is first added as the new root of the convex hull tree, making
the previous point pn−1 (the old root) its only child. The tree
is then processed using a recursive algorithm until all paths
from the root to the leaves are convex. As the algorithm is
applied incrementally it can be assumed that the paths were
valid before the addition of the new root. Therefore, it is
enough to process paths only to the point where convexity
once again holds.

The algorithm is first invoked using the triplet (root’s first
child’s first child→ root’s first child→ root) as its parameter.
We are naming the elements of such a triplet (childT →
parentT → root). The last element of the triplet will always
be the root element of the tree, and childT the first child of
parentT . First, the algorithm checks whether the vertices of
the triplet are convex. If they are, no action is needed and
the call returns. If the convexity check fails, then parentT

needs to be removed from this path, causing childT to be
connected directly to root . The edge from root to childT

will be above the edge from root to parentT , and therefore
the correct position for childT , as a root’s child, is before
parentT . If childT was also the last child of parentT , parentT

gets orphaned and is removed. Otherwise the second child of
parentT takes the place of the first child. After these changes
it is necessary to proceed both one step deeper and one step
wider from childT in the tree. Figure 6 illustrates the described
process.

When proceeding deeper, the previous childT becomes the
new parentT and the first child of childT becomes the new
childT . When stepping wider, parentT stays the same and
its (newly assigned) first child becomes the new childT . The
process continues recursively until the convexity checks for
each branch pass and the algorithm stops, at which point all
convex hull paths are valid. Algorithm 1 lists the pseudocode

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen/Low-Complexity Intervisibility in Height Fields 2353

root

parent T

childT

before after

Figure 6: Triplet (childT → parentT → root) fails the con-
vexity check (left), causing childT to disconnect from parentT

and connect to rootT (right). Two new triplets are then pro-
cessed, shown in blue.

for the recursive function. After the convex hull tree is valid
again, the visibility information is available as root’s direct
children (as a linked list) as described in Section 4.

Finally, after the convexity has been established, we deter-
mine whether the previous step started a new segment. When
the beginning of a segment is detected, the segment’s first
element is duplicated in the tree and set to be the last child
of the root. The duplicated elements form the leaf nodes of
the convex hull tree and are permanent throughout the line.

6. Complexity

In this section we observe the complexity of our convex hull
tree processing algorithm on a line of n steps. When sweeping
through an N ×N height field, 1 ≤ n ≤ √2N . Let mi denote
the number of visible horizons and ti the number of iterations
of Algorithm 1 at step i, 0 ≤ i < n on the line. Then the total
number of horizons on a line is given by m =∑n−1

j=0 mj and

the total number of iterations by t =∑n−1
j=0 tj . We first prove

that our algorithm’s complexity is linear in the total number
of produced output horizons (t = O(m)), and then analyze
the complexity of the horizons.

Algorithm 1: RecConvexity(childT, parentT, root)

if !convex(childT→ parentT→ root)
connect childT to root before parentT
if childT has a next sibling

first child of parentT← next sibling of childT

// Step wider
RecConvexity(next sibling of childT, parentT, root)

else
delete parentT

if childT has a first child
// Step deeper
RecConvexity(first child of childT, childT, root)

Table 2: The average number of horizons mi and iterations ti for
one azimuthal direction at a given point (denoted by ma and ta ,
respectively).

Height field ma ta ta /naı̈ve

Fractal terrain 9.25 11.7 2.4%
Brick surface 3.06 4.80 0.99%
Sine grid 1.68 3.02 0.62%
Blocks 2.55 3.76 0.78%

The total number of horizons m on all points of a line of
length n is at least n. We distinguish between three types
of iterations of the algorithm and show that these are either
O(n) or O(m):

(1) An iteration that fails the convexity check with a child
that does not have a next sibling results in the deletion
of the parent node. As there are at most n elements in
the tree, there can be at most n iterations of this type.

(2) An iteration that passes the convexity check will return
without further invocations of the algorithm. Each it-
eration of this type corresponds to exactly one visible
horizon formed by the parent node (directly connected
to the root). Also, no other iteration can produce the
same horizon because such an iteration would need
to have the same parent, and all such iterations would
need to emanate from this iteration. Therefore the num-
ber of iterations of this type will be exactly m.

(3) The last iteration type is the one for which the convex-
ity check fails, but results in the child being detached
from its previous parent and connected to the root
without the parent being deleted. As the parent and its
previous sibling were directly connected to the root
and formed consecutive horizons before this iteration,
the iteration will introduce a new horizon (formed by
the child) between the two. As this inevitably increases
the number of horizons, there can be at most m itera-
tions of this type.

The total number of iterations t is therefore at most 2m+ n,
or, of complexity O(m).

Table 2 presents empirical results for the number of visi-
ble horizons and iterations of Algorithm 1 for height fields
shown in Figure 7. The figures are measured from sweeps in
256 directions (K = 256) and averaged for one height field
point and for one azimuthal direction. The height fields are
of size 10242 (N = 1024) and the naı̈ve method performs
484 iterations per point on average. Compared to this figure,
the number of iterations required to produce the visibility
information is reduced by two orders of magnitude.

As a visibility description, horizons are in all cases at least
as compact as a point-to-point description: if the visibility

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2354 V. Timonen / Low-Complexity Intervisibility in Height Fields

fractal terrain brick surface sine grid blocks

Figure 7: The four 10242 height fields used as test data.

10

100

1 k

10 k

100 k

1 M

10 M

100 M

1 G

t

16 32 64 128 256 512 1 k 2 k 4 k 8 k 16 k

n

fractal k = 1.65

random k = 1.01

naïve k = 2

m = n k = 1

Figure 8: The number of required iterations t for a line of n

steps for fractal terrains and random data. The naı̈ve method
(in red) and linear scaling (in green) as references.

consisted of individual scattered points there would be one
horizon (that can be expressed by a single surface coordinate)
for each point. In practice it is common that the visibility of
each segment spans multiple consecutive points for which
only one horizon is required. This can be seen by comparing
Tables 1 and 2.

Determining visibility for a line of n samples using our
method has the worst-case complexity equal to that of the
naı̈ve method defined in Section 1, O(n2). This happens, for
instance, in a bowl-shaped height field where every other
point is depressed. On the other hand, if the height field is
dome-shaped, the complexity is O(n). We measure practical
complexity by presenting iteration counts for various height
field examples and by measuring scaling in n.

In order to measure scaling, we differentiate between two
types of content scaling which most practical height fields
exhibit a combination of. First, we measure increasing detail
using fractal terrains: every time n is doubled, more reso-
lution is added between the existing points using a uniform
distribution with half the range. Second, we measure increas-
ing extent with a constant level of detail using random data:
when n increases, more height data is randomized from a
fixed finite height range. Figure 8 shows the average number
of iterations t for a line of length n as a function of n. We

measure scaling by k in t = O(nk). For the naı̈ve method
k = 2, and for linear scaling k = 1. As the axes are logarith-
mic, we fit first-order polynomials to the graph (for n ≥ 512)
and attain k from their slopes. Visibility of the fractal terrains
seem to exhibit a scaling of roughly O(n1.65), whereas the
random data quickly settles to near-linear scaling of O(n1.01).
The data suggest that the scaling in most practical cases is
well below the quadratic scaling of the naı̈ve method.

We noticed that the average segment length in these two
height field examples is the same for all n, indicating that the
scaling is due to changes in the amount of visible horizons,
not due to changes in the average coverage of one horizon.
This means that the number of visible points as listed in
Table 1 would scale similarly, and the observed complexity
applies generally to visibility and not just to our visibility
description. An increase in detail could, however, also cause
an increase in segment lengths. This would be the case if
the sine grid shown in Figure 7 were to scale up without the
grid size changing (the number of sine ‘domes’ staying the
same): every point would continue to have the same number
of visible segments but the number of points belonging to
them would increase. This type of increase in detail would
yield linear scaling in our algorithm, and demonstrates the
power of the compactness of our visibility description.

7. Implementation

As current hardware accelerated graphics libraries have a
fixed rasterization stage that does not allow writing lines
into a framebuffer, we have chosen to use GPGPU. We use
OpenGL 4 and CUDA 3 in our implementation, and in this
section use CUDA terminology. Notes on performance apply
to the NVidia Fermi architecture [Nvi09].

The high-level framework begins with the passing of the
source height field as a texture from OpenGL to CUDA.
Visibility calculations are then performed in one kernel, one
thread mapping to one line in the height field. As many az-
imuthal directions are processed simultaneously as allowed
by the amount of available graphics memory. One output
buffer for each K is produced, of which π/2 rotations are lin-
early accumulated in CUDA reducing the number of buffers

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen/Low-Complexity Intervisibility in Height Fields 2355

to a quarter. Once the resulting K/4 buffers have been passed
back to OpenGL as textures, they are sampled and additively
blended in a floating point frame buffer.

In the actual visibility algorithm we implement a node of
a convex hull tree by allocating the following:

(i) one half-precision (16 bit) float for the height hi

(ii) one 15 + 1 bit unsigned integer for the distance di

(also index of self, i)
(iii) one 16 bit unsigned integer for the index of the first

child (null if a leaf)
(iv) one 16 bit unsigned integer for the index of the next

sibling

A node allocated this way fits into 8 bytes. Elements are
stored in global memory using indices that correspond to
element distances, with the exception of leaf nodes. Leaves
are stored using indices one smaller than their distance which
are known to be empty when the leaf is forked, and the 1 bit
flag is set to denote the offset.

The distance-based allocation yields sparse arrays, but ac-
cording to our benchmarks produced better overall perfor-
mance than having separate distance and index data and pack-
ing the elements densely. The optimal data layout depends
on the content of the height field and the target GPU archi-
tecture due to memory coalescing and caching efficiency. We
found good overall performance from a quasi-parallel allo-
cation in which the same indices of two to eight consecutive
threads are sequentially laid out in memory. Using the max-
imum amount of 48 kB of L1 cache on each multiprocessor
for global memory accesses also produced the best perfor-
mance. A cacheless architecture would not benefit from the
temporal coherence of memory accesses and we expect a
fully parallel allocation to yield best results on such GPUs.

To implement the recursion in Algorithm 1, we use a
stack stored in global memory. The quasi-parallel alloca-
tion scheme used for the convex hull trees produced the best
performance for the stacks as well.

In Algorithm 1, when the convexity check fails and childT

is connected to root , it is necessary to adjust both parentT
and its previous sibling. However, as we use a single link-
age scheme in which each node has links to its next sibling
and to its first child only, we need to carry both the parent
and its previous sibling (called parentprev from now on)
by pushing them onto the stack. The use of single linkage
also makes breadth-first traversal preferable for the follow-
ing reason: current childT will be the parentprev of the next
breadth iteration, however if depth is processed first and all
children of childT are connected to the root, then childT is
removed making the previous parentprev obsolete. Tracking
the changing of parentprev would require another stack.

Algorithm 2 OptimizedConvexity(root, inSafeZone)

Functions self(n), child(n), and next(n) return memory loc-
ations of node n, node n’s first child, and node n’s next sib-
ling, respectively. Function read(p) returns the node from
memory location p and write(n) stores node n to memory
location self(n). Operators are C style, and calls requiring
memory accesses are underlined.

preSet = true 1
regression = null 2

3
// { childT, parentT, parentprev, history } 4
s = { child(child(root)), child(root), null, 1 } 5

6
while stack not empty || preSet 7

if !preSet 8
s = stack.pop() 9

preSet = false 10
11

if self(s.parentT) == self(regression) 12
s.parentT = regression 13

14
if self(s.childT) && 15

!convex(s.childT→ s.parentT→ root)
if !self(s.parentprev) 16

child(root) = self(s.childT) 17
18

if !inSafeZone && (child(s.childT) || 19
child(s.parentT) == self(s.childT))

stack.push(child(s.childT) ?
read(child(s.childT)) 20

: null, s.childT, s.parentprev, s.history >> 1)
21

if next(s.childT) || next(s.parentT) 22
s.parentprev = s.childT 23
if next(s.parentprev) 24

s.childT = read(next(s.parentprev)) 25
else 26

s.childT = null 27
s.parentT = next(s.parentT) ? 28

read(next(s.parentT)) : null
s.history = 2 29
preSet = true 30

else 31
// & is bitwise and, ˆ is bitwise xor 32
if self(s.childT) && s.history & 2 33

child(s.parentT) = self(childT) 34
write(s.parentT) 35

if self(s.parentprev) && s.history ˆ 1 36
next(s.parentprev) = self(s.parentT) 37
write(s.parentprev) 38

regression = s.parentprev 39

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2356 V. Timonen / Low-Complexity Intervisibility in Height Fields

An optimized implementation of Algorithm 1 is listed as Al-
gorithm 2. As established, each time the convexity check fails
childT is connected to the root causing changes to linkage.
With some state tracking (variables regression and history)
these changes can be postponed and consolidated to the fail
block (lines 32–38) by pushing extra entries onto the stack
that have a null child. This also allows more efficient hard-
ware scheduling as threads do the expensive global writes in
one place instead of blocking the execution in several places.
As a result, reads were halved and writes were cut down to
about a tenth as compared to an algorithm that uses single
linkage and flushes changes to memory immediately. Also,
as pushes onto the stack are large and stress the memory
system, the latest stack element (breadth traversal) can be
passed on in a register variable, cutting down stack accesses
to a quarter on average.

There are two cases when running the convexity algorithm
is unnecessary. The first is when the new sample forms the
new root and inherits the old root as its child without further
changing the tree. The second and more important case is
when the new sample replaces the old root without affecting
the rest of the tree. Without specially treating this case all
children of the old root are traversed, and, as their convex-
ity checks fail, their first children are also traversed, whose
convexity checks all pass. This is an expensive operation,
and depending on height field content, may occur frequently.
The first condition for the old root being straightforwardly
replaced is when all its children get connected to the new
root. This can be easily tested for by checking if the convex-
ity check for (the last child of the old root→ the old root→
the new sample) fails, in which case all previous siblings of
childT also fail. The second condition is that there will be no
other changes to the children of the old root, which is a little
harder to test. Essentially it is necessary to know whether the
convexity checks on the first grandchildren of the old root
will pass with the new root as well.

We address these situations by maintaining a safe zone
between two distance boundaries that enclose the current
and some future steps. Edges from the first grandchildren of
the root to their parents are then projected against the distance
boundaries. The line between the lowest intersection points
at the boundaries forms a conservative upper bound for the
safe zone, demonstrated in Figure 9. When the old root is
determined to be replaced by a new sample landing within
the safe zone, height and distance of the root can be safely
renewed by those of the new sample.

The expense of being able to handle this special case ef-
ficiently is the need to keep the safe zone up-to-date by
iterating over the first grandchildren of the root whenever the
convex hull tree changes or the second boundary is stepped
over. Algorithm 3 describes the process of updating the safe
zone at boundaries b1 and b2. Although the performance im-
pact of this optimization depends on the height field content,
it was always beneficial in our benchmarks and improved

b1 b2

safe

zone

Figure 9: The lowest projected heights of the second level
horizons on the boundaries b1 and b2 form a zone where it is
safe to replace the root.

the performance on average by 50%. As a minor optimiza-
tion, the safe zone information is used to limit the convexity
algorithm (line 19 of Algorithm 2) in cases where the root is
not being completely replaced and the convexity algorithm
has to be invoked, but no grandchildren are affected.

Algorithm 3: SafeZoneUpdate(root, b1, b2)

b1h,b2h←∞
c← first child of root
do // Loop over root’s children

if exists gc← first child of c
// Project grandchild-child line on boundaries
b1h← min(b1h, line(gc→ c) at distance b1d)
b2h← min(b2h, line(gc→ c) at distance b2d)

while exists c← next sibling of c

8. Efficiency

In this section we discuss the efficiency of our implementa-
tion on an NVidia GTX 480 graphics card in order to give a
frame of reference to the previous and the following sections.
The two aspects we focus on are the utilization of computa-
tional resources and the efficiency of memory accesses. The
naı̈ve method is highly efficient from both aspects: neigh-
boring height field points undergo almost exactly the same
processing, allowing high utilization, while requiring sam-
pling on neighboring height field coordinates at all times,
allowing for optimal texture cache efficiency.

Concurrent threads in our algorithm, however, may per-
form significantly different amounts of computation per step.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen/Low-Complexity Intervisibility in Height Fields 2357

fractal terrain brick surface sine grid blocks

20 %

40 %

60 %

80 %

100 %

0 %

30 33
37

58

35

56

76

22 23

42

58

42

62
70

21
26

53

69

49

77

44

6.4
13

61

78

47
52

41

UC US ipc CL1 C16k
L1 CL2 mem

Figure 10: Efficiency measurements for four test height fields. From the left, the metrics are: utilization in convexity algorithm
(UC), utilization during safe zone update (US), instruction rate (ipc), L1 cache hit ratio (CL1), 16 kB L1 cache hit ratio (C16k

L1),
L2 cache hit ratio (CL2), and DRAM bandwidth (mem).

In current GPU architectures this yields low SIMT utiliza-
tion as threads within a warp will have to wait until the
longest running thread is finished. Memory accessing in our
algorithm is not quite optimal either: elements of convex hull
trees are accessed in a pattern where concurrent threads rarely
access consecutive memory locations. Also, one thread rarely
accesses consecutive indices of its own convex hull tree in a
temporally local manner, but rather switches from a branch
to the next in subsequent iterations of the algorithm. There-
fore there is little immediate coherency to be exploited for
either efficient memory coalescing or caching. Fortunately,
however, the data set for one thread in an N 2 height field is√

2N × 8 bytes at most, significantly less on average, and
only a small portion of the tree is traversed at each iteration,
making transparent caches useful afterall.

To quantify the aspects of computational utilization and
memory access, we use seven separate metrics:

Utilization in convexity algorithm (UC) measures the ratio
of active threads in a warp (that consists of 32 con-
secutive threads) during the while loop in Algorithm
2. This measure reaches 100% when all threads in a
warp execute the same number of iterations.

Utilization during safe zone update (US) measures the ratio
of active threads in a warp during the safe zone update
which requires looping over the children of the root.
This measure reaches 100% when all threads simulta-
neously decide to update the safe zone and do so in the
same number of iterations, e.g. have the same number
of visible horizons.

Instruction rate (ipc) measures the average number of in-
structions issued per clock cycle. A multiprocessor in
the GF100 architecture is able to issue at most 2 warp-
wide instructions per cycle.

L1 cache hit ratio (CL1) measures the ratio of memory re-
quests that were satisfied by the L1 cache. This in-
cludes accesses to both the convex hull trees and the
stacks.

16 kB L1 cache hit ratio (CL1
16k) measures the ratio of mem-

ory requests that were satisfied by the L1 cache when
configured to 16 kB.

L2 cache hit ratio (CL2) measures the ratio of memory re-
quests that could not be satisfied by the L1 cache but
were satisfied by the L2 cache.

DRAM bandwidth (mem) measures the amount of bytes
per second read or written by the memory controller
relative to the maximum throughput as measured by
the bandwidthTest tool in NVIDIA GPU Computing
SDK.

Data for the first two metrics are gathered internally by our
algorithm. Only the number of loop iterations is measured;
the loss in utilization caused by divergence during if-else
branching is not included in the measurement. Of these two
metrics UC is more important as the convexity algorithm
dominates the overall execution time. Data for the last five
metrics are extracted using NVIDIA Compute Visual Pro-
filer. Unless otherwise stated, the L1 cache is configured to
48 kB.

There are four main configurables in our algorithm. Op-
timal values for them depend on the height field content,
but as the values are currently not automatically adjusted at
runtime, we use the same values for all height fields. The
configurables and the values used are:

• Thread block size, 64

• The number of neighboring height field lines packed to-
gether in a thread block, 64

• The number of consecutive threads for which the same
indices in the convex hull tree are laid out sequentially
in memory, 4

• The number of consecutive threads for which same indices
in the stack are laid out sequentially in memory, 8

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2358 V. Timonen / Low-Complexity Intervisibility in Height Fields

Table 3: The average sweep time for the naı̈ve and our method, and
relative speedup.

21.2 ms

8.85 ms
5.05 ms
1.61 ms
0.52 ms

3.14 ms
0.59 ms

naïve
fractal terrain 2.4x
brick surface 4.2x
sine grid 13x
blocks 41x
Figure 11 6.8x
Figure 12 36x

Height field Time Speedup

In Figure 10 we observe the seven metrics for the four
test cases shown in Figure 7. We consider the algorithm ef-
ficient when measured by ipc, however the utilization UC is
relatively low and has a high impact on the effective instruc-
tion rate per thread. A work queueing approach might be
able to balance load and improve efficiency considerably,
but is beyond the scope of our paper. Our algorithm is also
memory intensive, and caching plays an important role in
overall performance. An increase in the amount of L1 cache
per thread would further reduce the strain on the memory
subsystem, and would likely improve performance.

9. Performance

We measure our visibility calculation performance against
the naı̈ve method implemented as an OpenGL fragment pro-
gram. Table 3 lists the average time taken to perform a sin-
gle sweep on the test height fields. The performance of the
naı̈ve method does not depend on the height field content.
Despite the shortcomings in the efficient mapping of our
algorithm to current GPUs as discussed in Section 8, our
method is still significantly faster than the naı̈ve method in all
test cases.

Choosing the number of azimuthal directions K is a bal-
ancing act between performance and approximation accu-
racy. In principle, to cover every single height field point for
each receiver point, O(N) directions need to be processed. A
lot fewer are usually adequate, but the appropriate value of K

depends on e.g. the geometric content, BRDF, and frequency
and intensity of the surface exit radiance. Different values of
K for the indirect lighting component are demonstrated on
a diffuse monochromatic surface under outdoor lighting in
Figure 14. Solving visibility with K = 32 over the varying
geometry in Figure 11 is achieved at 10 fps.

10. Discussion

10.1. Lighting

Although lighting methods that utilize the visibility informa-
tion produced by our visibility algorithm are future work,
in this section we outline ways to utilize our visibility de-

Figure 11: Top: direct illumination from a point light source
on a 10242 height field. Bottom: an additional indirect light
bounce. Accurate illumination in 64 directions is achieved in
1.21 seconds per frame (19 ms per direction).

scription and also demonstrate, through trivially gathering
the surface radiance, that also lighting within the lowered
complexity is possible.

The visibility horizons as produced by our method provide
exact angular coordinates for both the beginning and the end
of a segment’s visibility. The Cartesian coordinate is only
available for the beginning. We suggest three ways to utilize
this type of visibility information, in an order of increasing
computational complexity:

(1) As a line on the height field is traversed, record its
accumulated exit radiance in a way that allows sam-
pling the total segment radiance using the angular
coordinates.

(2) Record the accumulated exit radiance so that it can
be sampled using distance coordinates. To find the
exact Cartesian end coordinate of the visibiliy use any
of the various existing intersection search algorithms.
Two properties might prove useful: (i) there is exactly
one intersection point between the horizon line and

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen/Low-Complexity Intervisibility in Height Fields 2359

Figure 12: A 10242 height field with self-illuminating parts.
Illumination in 256 directions achieved in 1.68 seconds per
frame (6.6 ms per direction).

Figure 13: The height field used for error testing. The
surface exhibits diffuse reflection and is lit under outdoor
lighting.

the segment and (ii) the behaviour of the derivative is
known due to the convexity/concavity requirements.

(3) Traverse the visible points one at a time by start-
ing from each beginning coordinate and stepping to-
wards the receiver point until below the next horizon
(cf. Figure 3). This allows sampling of only the vis-
ible points (plus the partially visible at each horizon
boundary). The visible segments can be traversed in
parallel.

The potentially visible height field points and their exit
radiance along the line have already been traversed when it is
time to determine incident radiance for a receptor. Therefore
we find promise in fast lighting methods that accumulate
a description of exit radiance per segment such that it can,
ideally, be sampled directly with the information available in
our visibility horizons (alternative 1).

We demonstrate a trivial use of the 3. (slowest) alterna-
tive by sampling through the exit radiance one point at a
time and computing the contribution on the receiver ana-
lytically. While this method is slow compared to visibility
determination, it performs in the complexity of Table 1 and
Figure 8 while producing exact lighting. Figure 11 demon-
strates global lighting with one indirect bounce under direct
lighting of a single point light. The complete lighting per-
formed this way is faster than only finding the visible points
using the naı̈ve method.

Figure 12 demonstrates global lighting (direct lighting in
a dim 256 × 256 lighting environment plus one indirect
bounce) with parts of the height field emitting light by them-
selves. In this case, we achieve pixel-perfect lighting with an
unbound extent at a per-direction rate higher than that of the
approximative method in [NS09]. Multiple indirect bounces
can be simulated by repeating the indirect lighting phase us-
ing the output of the previous iteration as the new surface
radiance.

10.2. Error analysis

Errors in our method come from (i) sampling along each line,
and (ii) the discretization of the visibility search into K az-
imuthal directions. All image-space methods suffer from the
first issue: geometry is visited at sampled points, which gen-
erally are not the original height field points. Using heavy su-
persampling along a line is considered to produce the ground
truth. The more identifiable approximation in our method is
the discretization into azimuthal directions. Visibility solved
using a large value of K represents the ground truth in this
aspect.

In this section we analyze the error introduced by these two
issues as compared to the respective ground truths. As the
test case, we use a diffuse height field under outdoor lighting,
shown in Figure 13. The error is visualized in Figure 14 and
average error plotted in Figure 15. Generally the error in
indirect illumination is amplified by high-frequency details
in geometry and glossiness of the surface.

Azimuthal undersampling results in banding that is espe-
cially apparent on flat regions of a height field, however less
visible on uneven regions. One might argue that our method
is imbalanced for determining visibility along each line ac-
curately while crudely undersampling azimuthally, however
quantitative analysis implies that accurate visibility determi-
nation is necessary even for a small number of azimuthal

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2360 V. Timonen / Low-Complexity Intervisibility in Height Fields

K = 16 error ×10 K = 32 error ×10 K = 128 error ×10 K = 2048

S = 1/4 error ×10 S = 1 error ×10 S = 6 error ×10 S = 50

Figure 14: The indirect illumination component from Figure 13 and the corresponding error (white = 0%, black = 10%)
against ground truth (right) for different levels of visibility supersampling (on red) and values of azimuthal directions (on blue).

e

.07 %

.13 %

.21 %

.36 %

.61 %

1.0 %

1.7 %

3.0 %

5.0 %

K 8 16 24 32 48 64 96 128 256

S 1/8 1/4 1/2 1 2 3 4 6 8 12 16

Figure 15: The average error e per pixel for different values
of azimuthal directions K and supersampling S. The axes
are logarithmic.

directions: Figure 15 shows that K = 16 introduces an error
that is much smaller than that coming from unit length sam-
pling (S = 1). Qualitatively though, banding can be the most
outstanding visual artefact and in the next section we discuss
a way to trade it for noise.

10.3. Future work

As future optimizations, it may be possible to trigger a sim-
plification of the convex hull tree for parts far away from the
receptor every few dozen steps. Also because the algorithm
has traversed the data of the line already, the simplification
process can utilize the exit radiance and geometry informa-
tion along the line to estimate the impact of the simplification
in order to control the error in the resulting approximation.

Any such simplification can also be performed while pro-
cessing height field samples for the first time. For example,
it might be a reasonable optimization to ignore fine levels of
roughness on otherwise flat surface regions and favor extru-
sions over depressions when determining exit radiance from
the simplified regions. Other, non-sweep based methods, are
unaware of the contents of a line before taking the actual
samples, and therefore cannot trivially apply said data-aware
optimizations.

Previous methods based on the naı̈ve method that perform
an independent visibility search for each receiver point can
randomize azimuthal directions per receiver, and therefore
trade banding for noise. Trading banding for noise is also
possible in our method: one can perform a sparse sweep in
each direction (process every n-th line) while simultaneously
increasing K. Afterwards, when gathering results for a point
in the result buffer, one accumulates lighting only from direc-
tions that have a line that crosses the receiver point. Further-
more, a line does not have to strictly cross the receiver, but a
configurable distance epsilon can be used to provide a way
to trade noise for blur. Randomizing azimuthal directions in
previous methods incurs a penalty of lowered texture cache
hit ratio, the impact of which can be significant. Our method
takes very few height field samples per receiver and is not
bottlenecked by sampling, making it practically immune to
this penalty.

When it comes to applications, height field methods have
proven useful in producing lighting effects in screen space.
The main approximations of depth buffer geometry are
(i) not counting geometry outside the visible frame buffer and
(ii) taking only the first (visible) depth layer into account. It is
possible to alleviate these limitations [BS09], and we expect
our algorithm to prove useful in producing properly occluded
global screen-space indirect illumination effects not yet seen

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

V. Timonen/Low-Complexity Intervisibility in Height Fields 2361

in interactive graphics. Thus an interesting avenue of further
research is to investigate the possibility of producing global
scene lighting entirely in screen space, with light sources
rendered in HDR as part of the scene geometry.

11. Conclusion

Determining intervisibility on surfaces of objects is a prob-
lem that needs to be solved in various applications, including
global illumination systems in computer graphics. Unfor-
tunately, the problem is complex and its current solutions
computationally expensive. For height field geometry, the
problem can be reduced from 2.5D to 1.5D domain by ap-
proximating visibility in discrete azimuthal directions. The
most compact way currently known to express intervisibility
in the 1.5D case are local visibility horizons.

In this paper we have presented a novel algorithm that de-
termines local visibility horizons using incremental convex
hull trees. Visibility from every height field point is deter-
mined to a number of azimuthal directions in time that is
linear in the number of output visibility horizons, making
the algorithm of optimal time complexity. We have showed
that the proportion of visibility to the whole height field is
low, giving our algorithm an advantage over the previous
methods. In practice, we achieve a reduction by two orders
of magnitude in the number of iterations required to pro-
duce the accurate visibility information. Our method is also
amenable for GPGPU implementations and we have demon-
strated that such an implementation can achieve significantly
better performance than previous work.

Acknowledgments

I would like to thank Prof. Jan Westerholm for his advice and
support and Dr. Jukka Arvo for his helpful comments on the
manuscript.

References

[ADM∗08] ANNEN T., DONG Z., MERTENS T., BEKAERT P.,
SEIDEL H.-P., KAUTZ J.: Real-time, all-frequency shad-
ows in dynamic scenes. ACM Trans. Graph. 27, 3 (2008),
1–8.

[BS09] BAVOIL L., SAINZ M.: Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH ’09:
Talks. (New York, NY, USA, 2009) ACM.

[Bun05] BUNNELL M.: Dynamic ambient occlusion and
indirect lighting. Addison-Weseley Professional, 2005,
pp. 223–233.

[BWW05] BITTNER J., WONKA P., WIMMER M.: Fast exact
from-region visibility in urban scenes. In Rendering Tech-
niques 2005 (Proceedings Eurographics Symposium on

Rendering), Bala K., Dutré P. (Eds.), Eurographics, Euro-
graphics Association, 2005, pp. 223–230.

[CoS95] Cohen-or D., SHAKED A.: Visibility and dead-zones
in digital terrain maps. Computer Graphics Forum 14
(1995), 171–180.

[CS89] COLE R., SHARIR M.: Visibility problems for polyhe-
dral terrains. J. Symb. Comput. 7, 1 (1989), 11–30.

[DBBS06] DUTRE P., BALA K., BEKAERT P., SHIRLEY P.: Ad-
vanced Global Illumination. AK Peters Ltd, 2006.

[DBS08] DIMITROV R., BAVOIL L., SAINZ M.: Horizon-split
ambient occlusion. In I3D ’08: Proceedings of the 2008
symposium on Interactive 3D graphics and games (New
York, NY, USA, 2008), ACM.

[DFM94] DE FLORIANI L., MAGILLO P.: Computing point vis-
ibility on a terrain based on a nested horizon structure. In
SAC ’94: Proceedings of the 1994 ACM Symposium on
Applied Computing (New York, NY, USA, 1994), ACM,
pp. 318–322.

[DSDD07] DACHSBACHER C., STAMMINGER M., DRETTAKIS G.,
DURAND F.: Implicit visibility and antiradiance for interac-
tive global illumination. ACM Trans. Graph. 26, 3 (2007),
61.

[FHT09] FISHMAN J., HAVERKORT H., TOMA L.: Improved
visibility computation on massive grid terrains. In GIS
’09: Proceedings of the 17th ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Infor-
mation Systems (New York, NY, USA, 2009), ACM,
pp. 121–130.

[HBR∗11] HUANG J., BOUBEKEUR T., RITSCHEL T., HOLLÄNDER

M., EISEMANN E.: Separable approximation of ambi-
ent occlusion. In Eurographics 2011 - Short papers
(2011), 29–32.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH N.,
SILLION F.: A survey of real-time soft shadows algorithms.
Computer Graphics Forum 22, 4 (Dec 2003), 753–774.

[KZ02] KAUČIČ B., ZALIK B.: Comparison of viewshed algo-
rithms on regular spaced points. In SCCG ’02: Proceed-
ings of the 18th Spring Conference on Computer Graphics
(New York, NY, USA, 2002), ACM, pp. 177–183.

[LS10] LOOS B. J., SLOAN P.-P.: Volumetric obscurance. In
Proceedings of the 2010 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games (New York, NY,
USA, 2010), I3D ’10, ACM, pp. 151–156.

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 Courses (New
York, NY, USA, 2007), ACM, pp. 97–121.

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

2362 V. Timonen / Low-Complexity Intervisibility in Height Fields

[Nag94] NAGY G.: Terrain visibility. Computers & Graphics
18, 6 (1994), 763–773.

[NS09] NOWROUZEZAHRAI D., SNYDER J.: Fast global
illumination on dynamic height fields. Computer
Graphics Forum: Eurographics Symposium on Rendering
28, 4 (June 2009), 1131–1139.

[Nvi09] NVIDIA Corporation: Next Generation CUDA
Compute Architecture: Fermi. Whitepaper, Santa Clara,
CA, 2009.

[RGK∗08] RITSCHEL T., GROSCH T., KIM M. H., SEIDEL H.-
P., DACHSBACHER C., KAUTZ J.: Imperfect shadow Mmaps
for efficient computation of indirect illumination. ACM
Trans. Graph. (Proc. of SIGGRAPH ASIA 2008) 27, 5
(2008).

[RGS09] RITSCHEL T., GROSCH T., SEIDEL H.-P.: Approximat-
ing dynamic global illumination in image space. In I3D
’09: Proceedings of the 2009 Symposium on Interactive

3D Graphics and Games (New York, NY, USA, 2009),
ACM, pp. 75–82.

[SHR10] SOLER C., HOEL O., ROCHET F.: A deferred shad-
ing pipeline for real-time indirect illumination. In ACM
SIGGRAPH 2010 Talks (New York, NY, USA, 2010),
SIGGRAPH ’10, ACM, pp. 18:1–18:1.

[SLYY08] SHEN Y., LIN L., YANG M., YURONG G.: Viewshed
computation based on los scanning. In 2008 International
Conference on Computer Science and Software Engineer-
ing (Dec. 2008), vol. 2, pp. 984–987.

[SN08] SNYDER J., NOWROUZEZAHRAI D.: Fast soft self-
shadowing on dynamic height fields. Computer Graph-
ics Forum: Eurographics Symposium on Rendering 27, 4
(June 2008), 1275–1283.

[TW10] TIMONEN V., WESTERHOLM J.: Scalable height field
self-shadowing. Computer Graphics Forum (Proceedings
of Eurographics 2010) 29, 2 (May 2010).

c© 2012 The Author
Computer Graphics Forum c© 2012 The Eurographics Association and Blackwell Publishing Ltd.

Publication P3

Ville Timonen. Line-Sweep Ambient Obscurance. Computer Graphics Fo-
rum, 32(4), pages 97–105, 2013. Eurographics Symposium on Rendering
2013. Best Student Paper.

Eurographics Symposium on Rendering 2013
Nicolas Holzschuch and Szymon Rusinkiewicz
(Guest Editors)

Volume 32 (2013), Number 4

Line-Sweep Ambient Obscurance

Ville Timonen†

Turku Centre for Computer Science
Åbo Akademi University

Figure 1: SSAO rendered by our method at 1920×1080 (+10% guard band) in 1.7 ms on a GeForce GTX 480.

Abstract
Screen-space ambient occlusion and obscurance have become established methods for rendering global illumi-
nation effects in real-time applications. While they have seen a steady line of refinements, their computational
complexity has remained largely unchanged and either undersampling artefacts or too high render times limit
their scalability. In this paper we show how the fundamentally quadratic per-pixel complexity of previous work
can be reduced to a linear complexity. We solve obscurance in discrete azimuthal directions by performing line
sweeps across the depth buffer in each direction. Our method builds upon the insight that scene points along each
line can be incrementally inserted into a data structure such that querying for the largest occluder among the
visited samples along the line can be achieved at an amortized constant cost. The obscurance radius therefore has
no impact on the execution time and our method produces accurate results with smooth occlusion gradients in a
few milliseconds per frame on commodity hardware.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Computer Graphics—
Color, shading, shadowing, and texture

1. Introduction

Ambient occlusion and obscurance (AO) have become de-
facto parts of global illumination implementations, and their
screen-space evaluation (SSAO) has been widely adopted in

† e-mail: vtimonen@abo.fi

real-time applications. Since its inception in 2007, SSAO has
seen a steady line of improvements both in render quality
and render time. However, its computational complexity has
remained fundamentally the same. The distance of the AO
effect is defined in eye-space and may thus cover a large
range in screen-space, and high quality results still require

c© 2013 The Author(s)
Computer Graphics Forum c© 2013 The Eurographics Association and Blackwell Publish-
ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,
UK and 350 Main Street, Malden, MA 02148, USA.

�������	����
��	�����

V. Timonen / LSAO

more samples per pixel than is practically affordable in real-
time applications.

One established SSAO method is Horizon-Based Ambi-
ent Occlusion (HBAO) [BSD08] [Bav11] which accumu-
lates obscurance from a set of azimuthal directions, finding
the largest occluder in each direction by ray marching. While
HBAO’s physically based treatment of geometry scales well
quality-wise, the number of samples that is necessary in each
azimuthal direction for high quality results is prohibitive
performance-wise. Given K azimuthal directions and N steps
along each direction, HBAO’s time complexity per pixel is
O(KN).

We propose a method to calculate the same results in
O(K) time with unlimited range. Instead of calculating the
obscurance independently for each receiver pixel, we per-
form line sweeps over the screen. Each line is traversed in-
crementally, and the visited geometry along the line is stored
in an internal data structure which can be queried in amor-
tized constant time for the largest falloff attenuated occluder
at the new pixel. This significant reduction in the time com-
plexity of SSAO allows the fast production of high quality
renderings which is not impacted by the range of the effect.
Since we are not allowed to choose the azimuthal directions
for each pixel freely, but rather use a set of directions shared
by multiple screen pixels, our main visual artefact is banding
which can be alleviated by increasing K.

2. Previous Work

Evaluating AO from the geometry in the depth buffer was
first proposed by [Mit07] and [SA07] who sample a vol-
ume around the receiver pixel and determine the occlusion
from the number of points that fall below the depth field. As
scene geometry not merely blocks incoming light but also
reflects it, an empirically selected falloff function [ZIK98] is
usually introduced that weighs the sampled scene points ac-
cording to their distance from the receiver by putting more
weight to nearby occluders. Ambient occlusion extended
by a falloff function has been termed ambient obscurance.
Since [Mit07] and [SA07], several works such as [BS09]
[LS10] [MOBH11] [MML12] have refined the quality and
rendering speed of SSAO methods.

Evaluating each sampled scene point independently from
each other ignores the fact that the evaluation of occluders
in roughly the same azimuthal direction is not separable: A
tall nearby occluder might make occluders behind it invisible
such that these do not contribute to occlusion regardless of
their elevation. To address this issue [BSD08] takes a more
physically based approach along the lines of Horizon Map-
ping [Max88], whereby the highest horizon within a certain
range is searched for a set of azimuthal directions. While
this approach scales well with respect to image quality and
obscurance radius, it is expensive because many height field
samples have to be taken in each azimuthal direction. Our

method produces results essentially identical to [BSD08] but
we find the largest occluder in O(1) time for one azimuthal
direction within an unbounded radius.

We build upon the observation by [TW10] that sweeping
through a height field in lines and incrementally building
the convex hull of the visited geometry allows the extrac-
tion of global horizons in constant time for the purpose of
horizon mapping. In ambient obscurance, where the falloff
function attenuates occlusion with distance, the global hori-
zon is often very far away and contributes little to occlu-
sion, making the convex hull of little use in determining AO.
Also, [TW10] scans the height field densely and accumu-
lates rotated versions of the sweeps. This results in banding
unless many azimuthal directions are scanned, which in turn
becomes computationally expensive.

Our contribution over [TW10] is three-fold:

• Instead of using a geometrical convex hull, we form a hull
based on the falloff weighted obscurance.

• We generalize the scans to arbitrary sampling densi-
ties and propose a way to gather results sparsely per-
pixel, which allows trading high render times for edge-
respecting blur when the number of azimuthal scanning
directions is increased.

• We also suggest special line sampling patterns for cases
where depth buffer values cannot be interpolated (often
the case in SSAO).

3. Overview

The observation behind HBAO is that SSAO is physically
separable per pixel in azimuthal directions. We also exploit
this observation and calculate obscurance in K discrete az-
imuthal directions. For physically correct ambient obscu-
rance, in each azimuthal direction the falloff weighted oc-
clusion should be integrated from the tangent plane upwards
until the global horizon as shown to the left in Figure 2. This
results in unavoidably high complexity as obscurance has to
be gathered in many segments.

p p

o

Figure 2: Left: Obscurance gathered in segments of the ele-
vation angle between the tangent plane and the global hori-
zon onto receiver p. Each segment is shaded according to
the strength of the falloff term. Right: Obscurance from the
largest falloff weighted occluder, o, only.

However, if we are willing to make the sacrifice that

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

98

V. Timonen / LSAO

we calculate obscurance in each azimuthal direction from
only one occluder along that direction—the one that casts
the largest obscurance, as shown to the right in Figure 2—
an order of magnitude more headroom is made available
complexity-wise, which we in this paper show how to ex-
ploit. We define largest occluder as the occluder that would
cast the largest amount of obscurance on the receiver were it
the only occluder along the azimuthal direction. Fortunately,
it turns out that the visual impact of only considering the
largest occluder per direction is modest, as illustrated in Fig-
ure 3.

Figure 3: Right: Full obscurance. Left: Obscurance from the
largest falloff weighted occluder only.

Approximating obscurance from a single occluder typ-
ically yields underestimated obscurance because geometry
below the largest occluder tends to be closer than the largest
occluder (higher falloff term) and also because obscurance
coming above the largest occluder is simply ignored. How-
ever, given the approximated nature of SSAO the results are
entirely plausible and can be further compensated by lifting
the falloff function or by adjusting brightness/constrast in
post-process.

3.1. Our Method

Instead of calculating AO for each receiver pixel inde-
pendently (done predominantly in prior work) we traverse
through the depth field along lines that cover the framebuffer
evenly as shown in Figure 4. In a threaded implementation

W

H

Figure 4: Sweeps in K = 3 directions over a 8× 6 frame-
buffer. A total of K ·W ·H samples/receivers are considered.

each thread processes one line, and the line is traversed one

constant length step at a time. At each step the depth field is
sampled and the sampled point is deprojected into eye-space.
This point is then stored onto a stack using an algorithm (de-
scribed in detail in Section 4) that has an amortized constant
cost per step. Processing a line of N steps therefore has the
complexity of O(N). At any given point the largest occluder
is always found at the top of the stack.

Our method is compatible with obscurance estimators that
evaluate obscurance from a set of azimuthal directions and as
input take the horizon angle and the distance to the occluder.
In this paper we have chosen to use HBAO’s obscurance es-
timator:

AO(p,�n)≈ 1
K

K−1

∑
k=0

(
sin(t)+(sin(h)− sin(t))ρ(||�hk||)

)
,

(1)

�Dk = (sin(α),cos(α)),α = k ·2π/K,

�uk =−(pxy · �Dk, pz),�tk = (−�nz,�nxy · �Dk), �hk = (�oxy · �Dk,�oz),

sin(t) = t̂k · ûk,sin(h) = ĥk · ûk

for receiver point p with normal�n. The eye is located at the
origin and �uk is the zenith vector towards the eye. All vec-
tors denoted by subscript k are projected onto the 2D plane
along the azimuthal direction defined by the vector �Dk. Vec-
tor �o points from p towards the largest occluder along the
azimuthal direction. The terms are illustrated in Figure 5. It
should be noted that the first sin(t) in the sum in Eqn. 1 gets
canceled by opposing directions when both directions use
the same tangent plane. As we discuss strategies where this
is not the case, in Section 4.1, we include the term in our
obscurance estimator to ensure that AO does not evaluate to
a value larger than 1.

�o

p

ûk

h
t

Figure 5: Illustration of the terms used by our obscurance
estimator in Eqn. 1. Vector �o is the vector from the receiver
p to the largest occluder, ûk is the unit zenith vector towards
the eye, and t and h are the tangent plane and horizon an-
gles, respectively, from the zenith normal.

Our method can use any monotonically decreasing falloff
function ρ and for this paper we have selected an inverse
quadratic function similar to the function reported aestheti-
cally agreeable in [FM08]:

ρ(d) = r
r+d2 (2)

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

99

V. Timonen / LSAO

where r is used to control the decay rate.

The obscurance results written along the processed lines
are gathered per pixel in a separate phase, described in Sec-
tion 5. In Section 5 we also cover how lines are positioned
in the framebuffer and how sampling coordinates should be
chosen. Rendered images and execution times are then pre-
sented in Section 6 and compared against the most relevant
previous work.

4. Line Sweeping

In this section we describe the process of sweeping through
one line in the framebuffer. The output of this process are
obscurance values for the points along the line written to an
intermediate buffer.

4.1. Obscurance Hull

We first recapitulate the main idea behind incremental con-
vex hulls as introduced in [TW10] as our data structure is
motivated by it. In [TW10] height field points are iterated
along a line and incrementally inserted onto a stack that
holds the convex subset of the visited points. In order to keep
the stack convex before pushing a new point in, elements are
popped from the stack (shown in red in Figure 6) until the
last 2 points on the stack and the point to be added form
a convex set. The three points form a convex set when the
vector from the new point to the last point on the stack has a
lower slope than the vector from the new point to the point
second to last in the stack. Because the stack can be assumed
to have been convex in the previous iteration, due to induc-
tion it will remain convex after pushing the new point in. In
the convex hull the global horizon for the new point is cast
by the point next to it, which is now second to last in the hull
(shown in blue in Figure 6).

ppopped points

direction of line sweep

Figure 6: A convex hull before (dashed line) and after (solid
line) adding the new point p. The global horizon for p is cast
by the point next to it in the hull, marked in blue.

For the purpose of determining SSAO however, the global
horizon might be far away from the receiver, and, accord-
ing to the falloff function, might cast an insignificant obscu-
rance on the receiver. Since we are trying to find the point
between the global horizon and the receiver that casts the

largest falloff weighted occlusion we have to use an addi-
tional criterion to geometrical convexity for the hull. Instead
of popping the stack until the point to which the slope from
the receiver is the lowest is at the top, we pop the stack un-
til the point which casts the largest obscurance onto the re-
ceiver is at the top. The main difference to [TW10] is the
boolean function (with the three points as parameters) which
determines whether to pop elements from the stack: Instead
of testing for convexity, we compare the obscurance (Eqn.
1) from the last 2 points in the stack onto the new point.
Points are popped from the stack until the last points casts
the largest obscurance, or until the global horizon is reached.
We refer to a hull formed according to these criteria as an
obscurance hull. The obscurance hull will not necessarily be
convex and points in the beginning of the stack are progres-
sively losing weight due to the falloff function.

However, it is possible that in some extreme cases the ob-
scurance hull does not return the largest occluder for a re-
ceiver. In order to provide some intuition on when this can
happen, consider ρ to be a step function that puts full weight
to occluders within distance r and zero to others. Next, con-
sider that the colored points in Figure 6 are within r from
p and a new point, q, is encountered after p along the line.
Now, let q be at a height where the popped (red) points are
visible to q and within r, whereas the blue point falls out-
side r. In this case one of the popped points casts the largest
obscurance on q but instead p is returned by the obscurance
hull. Cases like this are rare but can occur in areas of rapid
depth changes. We measured the average error in the final
AO value caused by these degenerate cases to be small—
between 0.02% and 0.3% in scenes presented in this paper.

Some attention must be paid to the fact that the tangent
plane of the receiver appears in Eqn. 1. Obscurance is cut by
sin(t) which is not globally fixed. Therefore forming an ob-
scurance hull using one tangent plane might not give the cor-
rect obscurance onto a receiver that has a different tangent
plane. Eqn. 1 will be used to determine which points are to be
culled atop the stack, and also for calculating the obscurance
on the receiver once the largest occluder is found. There are
three main strategies for choosing the tangent plane for these
two operations:

1. Points are culled and obscurance is calculated using the
receiver’s real tangent. This however will cause the ob-
scurance hull to rapidly unfold when the tangent becomes
steep (high sin(t)), which may result in future largest oc-
cluders being culled and therefore in missing occlusion.

2. Points are culled assuming a globally fixed tangent while
the obscurance is calculated using the receiver’s real tan-
gent. This makes occlusion discontinued because the ob-
scurance hull gives the largest occluder based on different
criteria than the actual per-receiver obscurance is calcu-
lated with.

3. The tangent plane is fixed for all calculations ignoring the
real tangents of the points.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

100

V. Timonen / LSAO

reference

error ×2

Hull: real tangent,
Occ: real tangent:

1.

error ×2

Hull: sin(t) = 0.0,
Occ: real tangent:

2.

error ×2

Hull: sin(t) =−0.5,
Occ: real tangent:

error ×2

Hull: sin(t) =−0.5,
Occ: sin(t) =−0.5:

3.

error ×2

Hull: sin(t) =−1.0,
Occ: sin(t) =−1.0:

a b c

Figure 7: Various strategies for treating the tangent plane
sin(t) when constructing the obscurance hull ("Hull:") and
when calculating the obscurance ("Occ:"). The images show
the contribution of a single AO sweep directed to the right. A
cut from the Sibenik scene is shown for each strategy above
the respective error image. Areas of interest a, b, and c are
highlighted in blue.

Figure 7 visualizes ambient obscurance contribution from
a single sweep in the Sibenik scene using the three strate-
gies. A cut from the scene is shown from a part where the
tangent varies with respect to the sweep direction. The ref-
erence image is created by going through all steps along the
sweep line for each receiver individually in brute-force and
picking the largest occluder.

Strategy 1 may result in occlusion that is flat in regions
where, instead, a gradient should appear (area a in Figure 7).
Along a sweep, strategy 2 may switch from an occluder to
the next at a point where occlusions cast by the consecutive
occluders do not match. This causes a jump in the occlusion
value which is perceptually prominent (area c in Figure 7).
Strategy 3 both constructs the hull and evaluates occlusion
using the same tangent value and therefore produces con-
sistent, however biased, obscurance. The bias comes from
the fact that the tangent plane splits the occlusion integral in
two parts whose falloff terms differ: The first part is below
the tangent plane and has ρ = 1 and the second is above the
tangent plane and has ρ ≤ 1 that is dependent on the dis-
tance to the occluder. If sin(t) is chosen large, part of the
integral that should be evaluated using the occluder’s dis-

tance (i.e. is above the real tangent) may instead be consid-
ered to be below the fixed tangent plane and evaluated using
ρ= 1 causing overestimated occlusion. This is visible in area
b when sin(t) =−0.5. If sin(t) is chosen small, the opposite
may happen: Integral below the real tangent plane may get
weighted using the distance to the occluder, causing under-
estimated occlusion, which is most visible in area c when
sin(t) =−1.0.

While fixing the tangent (strategy 3) does not result in
geometrically correct calculations, or even the smallest ab-
solute out of the three options, we consider its error most
suitable to the approximated nature of SSAO. Also, the aes-
thetically chosen falloff term can be used to compensate for
underocclusion. In the following sections we have chosen
to fix all tangents to sin(t) =−0.85 which produces mainly
underocclusion.

4.2. Algorithm

Algorithm 1 lists the pseudocode for processing one line in
the framebuffer. For a line of M steps there are exactly M
pushes to the stack and therefore at most M pops. In addition,
there is one iteration per step that terminates the loop at lines
12 – 18 without causing a pop, which results in finding the
point that casts the highest obscurance. Therefore the inner
loop will perform between M and 2M iterations in total and
yields the time complexity of O(M) for the algorithm.

5. Gathering Line Sweep Results

In this section we cover how lines are spread out in the
framebuffer, how sampling coordinates are selected along
the lines, and finally how the obscurance results from pro-
cessed lines are gathered per final rendered pixel.

5.1. Line Placement

In order to densely evaluate obscurance for each of the K
directions lines can be placed 1 pixel width apart and steps
along each line can be chosen to be 1 pixel width long. As a
result obscurance is evaluated at W ·H pixels for each K di-
rections (previously illustrated in Figure 4). Since the same
set of azimuthal directions is shared by all pixels, banding
may become visible unless a large K is used. Increasing
K eventually hides banding, but render times also increase
linearly in K. In order to speed up rendering when a large
K is used it is often desirable to evaluate obscurance more
sparsely.

Instead of placing lines 1 pixel width apart, we can spread
them DL pixel widths apart where DL is a given fixed value.
Also, instead of taking 1 pixel width steps along each line,
we can take DS pixel width steps. Having DL and DS larger
than 1 effectively causes obscurance in one azimuthal direc-
tion to be evaluated sparsely. In order to gather the sparse
results for each receiver pixel in the frame buffer, we select

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

101

V. Timonen / LSAO

Algorithm 1 SweepLine(float2 pos, float2 dir, int steps)
Functions peek1() and peek2() return the last and the second
to last element of the stack, respectively.

1 while (steps−−)
2 {
3 float3 p = deProj(sampleDepth(pos))
4 float2 pk = float2(p.xy · dir, p.z)
5
6 // Unit vector towards the camera
7 float2 uk = −pk/||pk||
8
9 float2 h1 = hull.peek1() − pk

10 float2 h2 = hull.peek2() − pk
11
12 while

(
occlusion(h1, uk) < occlusion(h2, uk) &&

13 h1·uk/||h1|| < h2·uk/||h2||
)

14 {
15 hull.pop()
16 h1 = h2
17 h2 = hull.peek2() − pk
18 }
19
20 writeResult(occlusion(h1, uk))
21 hull.push(pk)
22 pos += dir
23 }
24
25 float occlusion(float2 h, float2 u)
26 {
27 // sin(t) = −0.85
28 return sin(t) + max

(
0, h·u/||h||− sin(t)

)
·ρ(||h||)

29 }

the nearest point in each K direction at which obscurance
was evaluated and average the results. Figure 8 illustrates
sparse sweeps using DL = DS = 2.0. Each sweep therefore
subsamples the depth field in a rotated grid pattern.

When the subsampled results from K sweeps are gathered,
a different set of points will be selected for each screen pixel
but the full azimuth of K directions is included and therefore
no noise is produced to the image. Instead blur is produced,
because the values that are averaged are sampled from the
neighborhood of the receiver pixel and not exactly at it. To
limit blurring, the average can be taken only from points
that have the normal, the depth (used in this paper), or both
within a threshold of the receiver, which is similar to edge-
awareness used by blur filters in previous methods. Previous
methods usually apply a large blur kernel to hide banding or
noise in post-process, whereas we hide banding by increas-
ing K and counter increase in execution time, in exchange
for blur, by gathering sparsely evaluated obscurance values.
The K nearest obscurance values for each screen pixel are
found within the radius of

√
(DS/2)2 +(DL/2)2 which for

W

H

Figure 8: Sparse (DS = DL = 2) sampling in 3 azimuthal
directions (K = 3). The K highlighted points are selected for
the screen pixel marked in gray.

sparsities used in this paper are small compared to a typical
post-process blur filter radius.

5.2. Sampling Coordinates

If the depth field is assumed not to be an infinitely thick vol-
ume, depth samples cannot be interpolated across depth dis-
continuities without causing temporal and spatial artefacts.
In [BSD08] this is addressed by snapping sampling coor-
dinates to texel centers, and methods relying on mipmaps
(such as [MML12]) do not actually average values but in-
stead use the values found in the base level of the depth
buffer.

However, sampling coordinates along arbitrary lines in
our method do not usually hit texel centers. Always snap-
ping to texel centers, on the other hand, produces artefacts
because the pattern of visited samples is not the same for
every receiver along the line as shown in Figure 9. This is
especially prominent on steep surfaces where a small devi-
ation from the center of the sweep line causes large jumps
in the sampled depth values. One possibility is to use linear
interpolation when traversing along a line until an edge is
detected (depth or normal changes too much from the previ-
ous point), in which case the sampling coordinate is snapped
to texel center and sampled again. While this eliminates the
sampling artefacts, it incurs some overhead and impacts per-
formance.

However, it is possible to choose the K directions and DS
such that the snapped sampling coordinates of previously
visited samples at any receiver form the same pattern. The
4 trivial cases are the axis aligned directions, for which any
DS can be used. For larger values of K, directions can be
chosen using a grid of (2n+1)× (2n+1),n ∈ Z+ texels as
a template as shown in Figure 10. This gives K = 8n aligned
directions. For each direction we choose the step length DS
and the direction such that they match the vector from the
center of the grid to each of the outer edge texel centers.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

102

V. Timonen / LSAO

W

H

Figure 9: The colored texels will be sampled when sampling
coordinates are snapped to texel centers. For two different
receivers along the line (in blue), the sampling patterns (in
red and green) relative to the receiver differ (1 left/0 down
and 2 left/1 down vs. 1 left/1 down and 2 left/1 down) and
show up as noise in the obscurance on slanted surfaces.

K = 8,DS = 1.41 K = 16,DS = 2.43

Figure 10: Aligned sampling patterns and their average step
length DS. The axis aligned directions use DS that is the av-
erage of the rest of the directions.

While this allows safe snapping of sampling coordinates
to texel centers, the average DS increases along with K. For-
tunately this is not a problem, since increasing K is often off-
set by making the sampling sparser (larger DS and DL) such
that banding is traded for blur without increasing the exe-
cution time. The average number of calculated obscurance
values per pixel is K/(DS ·DL).

Choosing sampling directions according to the box pat-
tern causes directions near the diagonals to be sampled more
densely. In order to avoid bias resulting from this, contri-
bution along directions should be weighted according to
the azimuthal coverage of each direction, such that smaller
weights are given to the diagonal directions. This will result
in slightly higher resolution sampling near the diagonals in-
stead of bias.

Figure 11 shows a scene with a slowly decaying falloff
(to accentuate banding) and different values of K, DS, and
DL such that the number of obscurance values per pixel re-
mains constant. Obscurance values, here, are gathered per-
pixel by respecting depth edges but ignoring normals. Re-
specting normals as well can be used to further contain blur.

Our implementation uses an intermediate floating point

K = 8,DS = 1.41,DL = 1.41:

K = 16,DS = 2.43,DL = 1.64:

K = 24,DS = 3.56,DL = 1.69:

K = 32,DS = 4.69,DL = 1.70:

Figure 11: Different number of azimuthal directions K with
sampling sparsities such that the density of obscurance val-
ues per pixel remains constant (K/(DS ·DL) = 4).

buffer the size of K ·W ·H/(DS ·DL) elements to store the
obscurance values of the line sweeps. For DS = 4.87,DL =
2.46,K = 16,W = 1920,H = 1080 (Figure 13) and DS =
2.83,DL = 2.12,K = 8,W = 1920,H = 1080 (Figure 1) this
is approximately 11 MB. Under tight memory constraints
it is also possible to scatter the results to the framebuffer
directly using atomic additions during line sweeps, but as
this produces highly uncoalesced writes on a GPU we found
its performance notably worse than using the intermediate
buffers.

6. Results

Since traversing lines that vary in their length and thus
write a different number of output values does not map
well to fragment shaders, our algorithm requires either com-
pute shaders or GPGPU. We have selected to use CUDA

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

103

V. Timonen / LSAO

and made the sources available under the BSD license at
http://wili.cc/research/lsao/. The benchmarks are
performed on an NVidia GeForce GTX 480 GPU. The
HBAO method used as the reference is implemented as an
OpenGL fragment shader. For quality and performance com-
parison between HBAO and other recent SSAO methods, re-
fer to [VPG13] and [McG10].

HBAO requires a falloff function that decays to 0, and we
have chosen the following falloff function for HBAO:

ρ0(d) = max
(

0,
r (1+C)

r+d2 −C
)

(3)

This function has roughly the same shape as Eqn. 2 for small
C. Compared to Eqn. 2 it is sunken by C, clipped to 0, scaled
to start from 1, and reaches zero at d =

√
r/C. In this section

we use C = 0.3.

Figure 12 shows two scenes rendered at
1280(+256)×720(+144) (20% guard band) using two
different rates of decay r for the falloff function. Our
method uses configurations for K = 8 and K = 16 shown in
Figure 11, whereas the number of HBAO steps N have been
hand-picked for each scene and are scaled per-pixel to cover
the eye-space falloff radius. The execution time of HBAO is
different for the two falloff decay rates because a different
number of steps has to be taken to cover the bulk of the
falloff function with the same granularity. The execution
time of our method depends mainly on the variance in the
number of iterations of the inner loop in Algorithm 1 within
warps of threads, and does not vary significantly. In all
scenes our method performs roughly 2K iterations per pixel
on average (≈ K during line sweeps and K for gathering
the results) whereas HBAO has to perform an order of
magniture more, K ·N.

Table 1 shows scaling with respect to screen resolution
in the Sponza scene at K = 16 (bottom left in Figure 12).
HBAO has to use larger N at higher resolutions to cover the
eye-space falloff at the same screen-space accuracy, whereas
our method has a constant per-pixel cost and scales linearly
in the resolution. The execution time of HBAO in fact in-

Table 1: Total render times of our method and HBAO at dif-
ferent resolutions using 20% guard band. The scene is shown
in Figure 12 to the bottom left.

Screen resolution Our method HBAO
800×600 1.49 ms 10.5 ms
1280×720 2.56 ms 24.2 ms
1920×1080 5.24 ms 92.5 ms
2560×1600 9.58 ms 249 ms

creases slightly faster than cubicly in the number of screen
pixels because of increased texture cache misses, whereas
the slower than quadratic scaling in the execution time of
our method at lower screen resolutions is due to the small

number of threads (i.e. lines to sweep) which impacts hard-
ware utilization. Our method takes very few texture samples
and is not much impacted by a texture cache miss penalty.

Our method consists of two stages: The line-sweep stage
and the result gathering stage. Table 2 shows execution time
breakdown for these two stages when K is increased but
K/(DS ·DL) is kept constant. Even though the amount of in-
termediate sweep data stays the same, more data is read per
pixel which shows up as a steady increase in the execution
time of the gather stage. Execution time of the line-sweep
stage, on the other hand, decreases slightly because the work
is split into a larger number of threads that run shorter, which
improves hardware utilization.

Table 2: Render time breakdown per stage for our method
at 1280(+256)×720(+144) for cases shown in Figure 11.

Configuration Line-sweep Gather
K = 8,DS = 1.41,DL = 1.41 1.91 ms 0.38 ms
K = 16,DS = 2.43,DL = 1.64 1.80 ms 0.59 ms
K = 24,DS = 3.56,DL = 1.69 1.67 ms 0.73 ms
K = 32,DS = 4.69,DL = 1.70 1.60 ms 0.90 ms

Finally, two more scenes rendered at 1080p resolution
are shown in Figures 1 and 13. Both scenes are rendered
at 1.33 obscurance evaluations per pixel in roughly 2 ms;
Figure 1 with K = 8,DS = 2.83,DL = 2.12 and Figure 13
with K = 16,DS = 4.87,DL = 2.46. Since our method uses

Figure 13: SSAO rendered by our method at
1920(+192)×1080(+108) in 2.3 ms on a GeForce GTX 480.

a globally fixed set of K azimuthal directions, a small K can
result in severe banding. Our primary way of fighting band-
ing is by increasing K, and our primary way of fighting high
render times due to a high K is by controlling the sparsity
parameters DL and DS. In summary, the configuration of our
algorithm is a balancing act of performance, banding, and
blur: A small K and high DL and DS improve render times,
whereas a high K reduces banding and small DL and DS re-
duce blurring.

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

104

V. Timonen / LSAO

Our K = 16

2.56 ms

HBAO K = 16,N = 32

24.2 ms

Our K = 8

2.96 ms

HBAO K = 8,N = 16

7.2 ms

Our K = 16

1.93 ms

HBAO K = 16,N = 48

37.2 ms

Our K = 8

1.67 ms

HBAO K = 8,N = 12

5.8 ms

Figure 12: Scenes rendered at 1280(+256)×720(+144) using different falloff decay rates by our method and HBAO. For HBAO,
the number of steps along each of the K azimuthal directions is denoted by N.

7. Conclusion

Our method is the first attempt to reduce the underlying time
complexity of SSAO since its introduction in 2007. Previous
methods rely exclusively on strategies that, in order to deter-
mine visibility of (and eventually occlusion from) m sampled
scene points around n receivers, require O(mn) work. Many
of the m points are not visible to the receiver or cast only a
small amount of occlusion. In contrast, our method finds the
largest falloff weighted occluders along K azimuthal direc-
tions for n receivers in O(Kn) time. The falloff radius has
no impact on the performance or on the image quality of our
method. The largest occluder is found in constant time at per-
pixel accuracy regardless of its distance from the receiver,
therefore avoiding exhaustive sampling based searches used
by previous methods.

Our method uses a globally fixed set of K azimuthal di-
rections and is prone to exhibit banding for small K. In order
to avoid having to increase execution time linearly in K to
hide banding, it is possible to accept blur instead by eval-
uating obscurance at a lower than per-pixel density along
the depth field and gather, per final screen pixel, the near-
est value from each azimuthal direction. Overall our method
greatly improves the render times of medium to large range
SSAO effects and scales well to high resolutions.

References
[Bav11] BAVOIL L.: Horizon-based ambient occlusion using

compute shaders. NVIDIA Graphics SDK 11 Direct3D (2011).
2

[BS09] BAVOIL L., SAINZ M.: Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH ’09 Talks (2009),
ACM. 2

[BSD08] BAVOIL L., SAINZ M., DIMITROV R.: Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08: ACM SIG-
GRAPH 2008 talks (New York, NY, USA, 2008), ACM, pp. 1–1.
2, 6

[FM08] FILION D., MCNAUGHTON R.: Effects & techniques.
In ACM SIGGRAPH 2008 Games (New York, NY, USA, 2008),
SIGGRAPH ’08, ACM, pp. 133–164. 3

[LS10] LOOS B. J., SLOAN P.-P.: Volumetric obscurance. In
Proceedings of I3D 2010 (2010), ACM. 2

[Max88] MAX N.: Horizon mapping: shadows for bump-mapped
surfaces. The Visual Computer 4, 2 (Mar. 1988), 109–117. 2

[McG10] MCGUIRE M.: Ambient occlusion volumes. In Pro-
ceedings of High Performance Graphics 2010 (June 2010). 8

[Mit07] MITTRING M.: Finding next gen: Cryengine 2. In
SIGGRAPH ’07: ACM SIGGRAPH 2007 courses (2007), ACM,
pp. 97–121. 2

[MML12] MCGUIRE M., MARA M., LUEBKE D.: Scalable am-
bient obscurance. In High-Performance Graphics 2012 (June
2012). 2, 6

[MOBH11] MCGUIRE M., OSMAN B., BUKOWSKI M., HEN-
NESSY P.: The alchemy screen-space ambient obscurance algo-
rithm. In Proc. HPG (2011), HPG ’11, ACM, pp. 25–32. 2

[SA07] SHANMUGAM P., ARIKAN O.: Hardware accelerated
ambient occlusion techniques on gpus. In Proc. I3D ’07 (2007),
ACM. 2

[TW10] TIMONEN V., WESTERHOLM J.: Scalable Height Field
Self-Shadowing. Computer Graphics Forum (Proceedings of Eu-
rographics 2010) 29, 2 (May 2010), 723–731. 2, 4

[VPG13] VARDIS K., PAPAIOANNOU G., GAITATZES A.: Multi-
view ambient occlusion with importance sampling. In Proc. i3D
(2013), I3D ’13, pp. 111–118. 8

[ZIK98] ZHUKOV S., INOES A., KRONIN G.: An Ambient Light
Illumination Model. In Rendering Techniques ’98 (1998), Dret-
takis G., Max N., (Eds.), Eurographics, Springer-Verlag Wien
New York, pp. 45–56. 2

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.

105

Publication P4

Ville Timonen. Screen-Space Far-Field Ambient Obscurance. In Proceed-
ings of the High Performance Graphics 2013, pages 33–43, ACM.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
HPG 2013, July 19 – 21, 2013, Anaheim, California.
Copyright © ACM 978-1-4503-2135-8/13/07 $15.00

Screen-Space Far-Field Ambient Obscurance

Ville Timonen∗

Turku Centre for Computer Science
Åbo Akademi University

Figure 1: Left: screen-space far-field (≥ 15 px) occlusion component solved by our method in 4.6 ms on a 1280(+256)×720(+144) depth
buffer. Right: ray traced screen-space reference result.

Abstract

Ambient obscurance (AO) is an effective approximation of global
illumination, and its screen-space (SSAO) versions that operate on
depth buffers only are widely used in real-time applications. We
present an SSAO method that allows the obscurance effect to be de-
termined from the entire depth buffer for each pixel. Our contribu-
tion is two-fold: Firstly, we build an obscurance estimator that accu-
rately converges to ray traced reference results on the same screen-
space geometry. Secondly, we generate an intermediate represen-
tation of the depth field which, when sampled, gives local peaks of
the geometry from the point of view of the receiver. Only a small
number of such samples are required to capture AO effects without
undersampling artefacts that plague previous methods. Our method
is unaffected by the radius of the AO effect or by the complexity
of the falloff function and produces results within a few percent
of a ray traced screen-space reference at constant real-time frame
rates.

CR Categories: Computer Graphics [I.3.7]: Computer
Graphics—Color, shading, shadowing, and texture

Keywords: ambient occlusion, screen space

1 Introduction

Ambient occlusion approximates global illumination under the as-
sumption that the scene is uniformly lit by blocking part of the in-
cident light due to surrounding occluders. Ambient obscurance ex-
tends ambient occlusion by introducing a falloff term which atten-

∗e-mail: vtimonen@abo.fi

uates the occlusion effect as a function of occluder distance. The
appropriate choice for a falloff term depends on various factors and
therefore an ambient obscurance algorithm should be able to sup-
port any such distance dependent falloff function.

Screen-space ambient occlusion and obscurance (SSAO) methods
have recently become very popular in real-time applications be-
cause they only require the depth buffer as input and are therefore
easily applied as a post-process or plugged into a deferred renderer,
work on fully dynamic scenes, and are insensitive to scene com-
plexity. The falloff term is defined in eye-space distances, which
means that the obscurance radius in screen-space depends on the
camera’s distance to the geometry and may get arbitrarily large.
If this was not the case, objects would change appearance as they
get closer to the camera. Indeed, an AO effect that conveys the
proper global illumination feel often extends a significant radius in
screen-space. The best any SSAO method can do given the infor-
mation available in the depth buffer is represented by a ray tracer:
From each receiver pixel rays are traced over the hemisphere to
their nearest intersection with the depth field, and then falloff and
cosine weighted.

A majority of real-time SSAO methods rely on taking point sam-
ples of the depth buffer in the immediate pixel neighborhood of
the receiver. This approach is efficient for gathering ambient oc-
clusion from a small neighborhood around the receiver, making
screen-space near-field occlusion largely a solved problem. How-
ever, as the sampled environment grows in radius, geometry will be
missed and noise is produced. Keeping up with the increased ra-
dius requires quadratic work and has not been found feasible, even
after accepting a blurrable amount of noise. It is possible, how-
ever, to use mipmapped depth data such that lower resolution levels
are used when sampling farther from the receiver. This approach
is used by most state-of-the-art methods and does not miss geome-
try, but simply averaging the depth field corrupts occluders as seen
from the receiver and causes erroneous results.

In this paper our primary contribution is an intermediate representa-
tion of the depth field that can be sampled at various distances from
the receiver to get virtual scene points that reconstruct features im-
portant for AO. The intermediate representation is generated in a

33

pre-pass which scans through the depth field, runs in time that is
linear in the depth field size, and generally takes a small fraction
of the total time. Our secondary contribution is an obscurance es-
timator that is fast to evaluate and converges accurately to the AO
integral [Zhukov et al. 1998]. When evaluated with scene samples
from our intermediate representation, the estimator reaches results
within a few percent of the ray traced screen-space reference at real-
time frame rates.

Our algorithm executes in three passes: First the depth field is pre-
processed by scanning along multiple azimuthal directions, next the
output is traversed orthogonally to the scanning directions to pre-
integrate dominant occluders, and finally obscurance is evaluated
per-pixel from the reconstructed occluders. The key features of our
SSAO solution are:

• Constant time, unbounded radius (the effect may span the en-
tire screen)

• Does not miss important occluders (no noise or need to filter)

• Supports arbitrary falloff functions (no render time evalua-
tion)

2 Previous work

In this section we cover only previous work most relevant for our
method; for a recent review of ambient occlusion and SSAO meth-
ods, consult [Ritschel et al. 2012].

The main branch of present SSAO methods follows from the works
of [Mittring 2007] and [Shanmugam and Arikan 2007] where point
samples around the receiver are taken to approximate the visibil-
ity of the hemisphere. In order to avoid overocclusion when sam-
ples farther from the receiver are evaluated, it is important to know
whether there is intersecting geometry closer to the receiver which
would render the sampled point invisible. To this end, it is possi-
ble to connect the samples along one azimuthal direction to get one
horizon value instead, as done in [Bavoil et al. 2008]. AO is calcu-
lated based on the global horizon angle and rays below the horizon
are assumed to be occluded. However in ambient obscurance, when
a non-constant falloff term is used, occluders’ distances below the
horizon affect the amount of occlusion and need to be known. Our
method tracks the horizon incrementally as geometry is traversed
outwards from the receiver, and occlusion coming from geometry
visible to the receiver below the global horizon is properly weighted
by distance.

Global horizons for a height field are calculated efficiently in [Ti-
monen and Westerholm 2010] for direct lighting of a height field,
however for ambient obscurance the same single-horizon problem
applies: No information is kept of the geometry below the global
horizon, and weighting the occlusion properly according to a falloff
function is not possible. Errors can get arbitrarily large because it is
not known how far the geometry below the global horizon is from
the receiver. [Timonen 2013] fits this method to SSAO by find-
ing the largest falloff attenuated occluder for each direction instead
of the global horizon. While this is much more useful for SSAO,
geometry above the largest occluder is ignored and the distance to
the geometry below the largest occluder is still unknown. While
this is suitable for approximate SSAO, results do not converge to
a ray traced reference or scale to very high quality like those of
our method. Also, both [Timonen and Westerholm 2010] and [Ti-
monen 2013] sample the height field along straight lines whereas
we account for the visibility of the geometry over the full azimuth.
Considering geometry only along a set of straight lines significantly
accentuates banding (cf. Figure 10).

Lower resolution (mipmapped) depth buffers can be used for sam-
pling farther from the receiver as done by [Bavoil and Sainz 2009]
[Hoang and Low 2012] [McGuire et al. 2012]. An artefact-free
sampling of this multi-resolution representation is not a trivial task,
as shown in [Snyder and Nowrouzezahrai 2008]. Regardless of the
used low-pass filter, reducing the depth field over an area into a
single-valued texel does not capture the view-dependency when the
depth field is viewed from an arbitrary receiver. While we also use
a resolution hierarchy, we capture information of the enclosed ge-
ometry such that it retains the approximated local peaks as viewed
from any receiver. Furthermore, levels in our hierarchy are well-
aligned (do not overlap or have gaps), making artefact-free sam-
pling straight-forward.

Methods that sample an area around the receiver that is fixed in
screen-space may produce fast results [Loos and Sloan 2010], but
these methods neither scale to far-field AO nor respect a falloff
term. It is also possible to use a forward rendering approach to AO
whereby scene geometry prior to rendering is expanded and occlu-
sion is spread onto the area of influence. This approach is pursued
in [McGuire 2010], but the method does not scale to far-field effects
because of increased overocclusion and high fillrate requirements.

A near-field screen-space search can be coupled with a far-field
world-space method. A voxelization of the scene is ray traced
in [Reinbothe et al. 2009], and [Shanmugam and Arikan 2007]
use spherical proxies to approximate scene polygons. World-space
methods have significantly different characteristics to screen-space
methods: While they have the possibility to include geometry not
visible in the depth buffer, they are forced to evaluate the visibility
of many geometric primitives per pixel. This is costly and prone
to produce overocclusion. Results and performance depend on the
scene geometry whereas pure screen-space methods are insensitive
to scene complexity.

Finally, purely ray traced AO methods such as [Laine and Karras
2010] produce results similar in quality to ours but do not suffer
from the limitations of screen-space information. These methods
are, however, at least an order of magnitude slower.

3 Algorithm overview

Our algorithm takes as input the depth and normal buffers, the pro-
jection matrix, and a pointer to the falloff function. The depth and
normal buffers can change freely between frames, and the depth
buffer may include optional guard bands. Geometry within the
guard bands are considered as occluders, but obscurance values are
not calculated for pixels in the guard band. The output of our algo-
rithm is a floating point map of the ambient light.

We evaluate the 2D ambient obscurance integral in K azimuthal
slices. In Section 4 we describe our obscurance estimator that is
evaluated for each screen pixel. It takes scene points along each
azimuthal direction as input. In order to generate these points, our
method first scans the depth buffer in parallel lines in K azimuthal
directions and writes out an intermediate representation at regularly
spaced intervals along the lines as described in detail in Section 6.
This is illustrated for one azimuthal direction to the left in Figure 2.
This intermediate data is then optionally (when the depth field can
be assumed continuous) traversed perpendicular to the azimuthal
scan direction and turned into a prefix sum, as shown to the center
in Figure 2. The purpose of the prefix sum is to allow averaging of
the intermediate data over each of the K azimuthal sectors which
effectively avoids azimuthal undersampling and reduces banding.
This phase is described in Section 7. Finally, the prefix sum is
sampled per pixel, shown to the right in Figure 2, to construct points
(as input to our obscurance estimator) that track local peaks of the
depth field. As a reference method we use a mipmapped depth

34

Line scans Prefix sums Geometry reconstruction

p

h0

h1

Figure 2: The three main stages of our method for one azimuthal direction. The first stage scans the depth buffer in parallel lines (arrows
to the left) and outputs intermediate geometry at regularly spaced intervals (gray lines). The second stage traverses the output (arrows in the
middle) across multiple scan lines and generates prefix sums. The third stage samples the prefix sums per pixel (one pixel highlighted in gray
to the right) to construct scene points hi used as input by our obscurance estimator.

buffer, described in Section 5, which is used in present state-of-
the-art. Results are presented in Section 8.

The remaining perceptually dominant artefact in our method is
banding. We propose three mutually complementary strategies to
reduce banding:

1. Averaging scene points over sectors in continuous depth fields
(Section 7)

2. Sparse evaluation of sectors which trades banding for blur and
reduces render times (Section 10)

3. Jittering sampling directions per-pixel which trades banding
for noise (Section 11.1)

Our method is most useful for finding far-field occluders and can
be coupled with a lighter weight near-field search as discussed in
Section 9. The usual limitations of depth buffer geometry apply
and are discussed with regards to our method in Section 11.

4 Obscurance estimator

We build our obscurance estimator such that it converges to the
original definition of ambient obscurance [Zhukov et al. 1998]:

AO(p, ~n) =
1

π

∫

Ω

ρ(d(p, ~ω))max(0, ~n · ~ω)d~ω (1)

where d(p, ~ω) is the distance of the nearest occluder from p in
direction ~ω, ρ → [0, 1] is the falloff term as a function of distance,
and Ω denotes the unit sphere in R3. The falloff function should
be smooth and it typically applies that ρ(0) = 1 and ρ(∞) = 0,
but the exact type and rate of decay is defined by the application.
We support any such falloff function and its complexity only affects
pre-calculation, not runtime performance.

For geometrically correct SSAO the surrounding geometry for a re-
ceiver has to be traversed in azimuthal directions starting from near
the receiver and progressing outwards, an approach first taken by
[Bavoil et al. 2008]. This way the nearest occluder along a direc-
tion from the receiver is guaranteed to be found and contribution
from invisible geometry (behind a nearer occluder) can be correctly
ignored. At each receiver we consider the vector from the receiver
to the camera to represent zenith, and the sphere around the receiver
is split into K azimuthal sectors. Therefore the 2D integral of Eqn.
1 is decomposed into K 1D integrals. Each of the 1D integrals is
evaluated on a plane that includes the zenith vector and the vector

pointing towards the azimuthal angle k2π/K:

AO(p, ~n) ≈

1

π

K−1∑

k=0

(
wk

∫ π

0

ρ(d(p, ~θk))max(0, ~nk · ~θk)sinθdθ
)

(2)

where ~θk is a unit vector in the k:th azimuthal plane towards the
horizon angle θ, and ~nk is the projection of ~n onto this plane. Ge-
ometry will be sampled from the depth buffer along equal size az-
imuthal sectors in screen-space which map to relative sizes wk as
measured around the zenith for each p. The term sinθ accounts for
the width of the sector as a function of the horizon angle and goes
to zero near the zenith.

The integral in Eqn. 2 is evaluated piecewise from depth field points
in each sector. The points should be culled to form a series of in-
creasing slopes as measured from the receiver p, i.e. the points
should be visible to p. In practice, when the depth field is sampled
progressively farther from the receiver, the largest horizon angle
from the receiver to the sampled scene point is tracked and new
points are known to be visible when their horizon angle exceed the
previous maximum horizon angle. As we will only evaluate obscu-
rance from a set of points along a sector that are apart from each
other, we do not know the distance of the geometry between the
points. For conservative obscurance, we assume that each sampled
scene point represents a "slab" of geometry that extends outwards
from the camera along the negative zenith direction, as illustrated
in Figure 3. The slabs extend the thickness of the depth field; to
infinity if the depth field is assumed continuous. While it would

camera c

far plane azimuthal direction

p

~z

~nk

h2

h1

h0

Figure 3: A sequence of Ik = 3 partially visible slabs along sector
k. Points hi are the top points of the visible slabs. The strength of
the falloff term is noted by shading.

35

require a slab for every visible point in the depth field along the
azimuthal direction to represent the integral in Eqn. 2 exactly, we
note that only a few (less than 10) points are required to give values
not more than 1% off from the ray traced values if the points are
chosen carefully, which we will show in Section 8.

The piecewise evaluation of Eqn. 2 in Ik visible slabs now be-
comes:

∫ π

0

ρ(d(p, ~θk))max(0, ~nk · ~θk)sinθdθ ≈
Ik−1∑

i=0

||~nk|| (L(ai, bi, ci, d) − L(ai−1, bi, ci, d)) , (3)

ai = ∠(hi − p, ~z),

bi = ((py − cy)(hix − cx) − (px − cx)(hiy − cy))/||hi − c||,
ci = ∠(hi − c, ~z), d = ∠(~nk, ~z)

where L is a 4D pre-calculated table. The four arguments of L, in
order, are

1. The angle ai of the vector from the receiver to the sampled
scene point

2. The closest distance bi from the receiver to the line formed by
the slab, hi + t(hi − c)

3. The angle ci of the slab

4. The angle d of the projected normal

where all angles are with respect to the zenith vector ~z = c − p. L
is constructed in an offline pre-pass by generating the correspond-
ing slabs and evaluating the falloff weighted integral numerically by
ray casting. We have implemented L as a 3D texture where ci and d
share an axis. The sharing is implemented by first splitting the axis
into segments, one for each discretized value of d, and then placing
consecutive values of ci consecutively within each segment. There-
fore ai, bi, and ci can be linearly interpolated and d is chosen as the
nearest discretized value. Although L is of high dimensionality, the
involved functions are very smooth and therefore low resolutions
are sufficient which helps to keep the texture size moderate (within
a few MB).

5 Reference method: mipmap

Our obscurance estimator needs as input the scene points along
azimuthal directions in the depth buffer for each receiver. In the
simplest case these points can be direct depth buffer samples de-
projected into eye-space. While this is the most widely taken ap-
proach in current SSAO methods, it does not scale well to far-field:
Dense sampling translates into high render times and sparse sam-
pling causes undersampling artefacts because important geometry
might be missed.

The approach taken by previous state-of-the-art SSAO methods is
to generate a depth pyramid (mipmap) that has a series of lower
resolution levels of the depth buffer. Regardless of the filter used
to generate the lower resolution levels from the base level, this ap-
proach does not retain the view-dependent information of the depth
field necessary for accurate AO. We tried several filters including
the ones covered in [McGuire et al. 2012] and considered averaging
to produce the best results as it does not introduce sudden changes
to obscurance like, for example, max-mipmaps do. However, when
the depth field cannot be assumed continuous, only points in the
original depth buffer can be used. In this case we found max-
mipmaps to perform best and we use them in Section 11. Until

Section 11 we assume a continuous depth field and compare our
geometry representation against averaged mipmaps.

In the mipmap method, from each receiver point, we start traversing
the surrounding depth buffer along each of the K azimuthal direc-
tions by first sampling the base level texture at a distance of one
texel. After each sample, the step size is multiplied by a constant
and the sampling distance is accumulated by the step size. This
yields an exponentially sparser sampling. We found the constant
of 1.5 to produce the best performance-quality tradeoff when used
with K = 16 and these parameters are used in Section 8.

We use trilinear filtering available in hardware, and choose the
mipmap level in such a way that the sample’s coverage of the depth
buffer matches the sector’s width at any given sampling distance.
In order to avoid sudden changes in obscurance when the last sam-
pling position goes outside the depth buffer, an extra sample is al-
ways taken at the very edge of the depth buffer.

6 Intermediate geometry along scanlines

In this section we describe how our method scans the depth buffer
in order to create an intermediate representation of the depth field.
We scan the depth buffer in a dense set of parallel lines for each K
azimuthal direction and incrementally track the depth field profile
along those lines. The parallel lines are spaced one texel width apart
along the depth buffer and the lines are traversed one texel width
step at a time. In a threaded implementation one thread processes
one line. A scan along one azimuthal direction in a depth buffer is
shown to the left in Figure 4.

m0

m0

Figure 4: The depth buffer (grid shown in the background) is
scanned in one of the K azimuthal directions in parallel lines (ar-
rows). The maximum height m0 of each line every B0 = 3 steps
(thick gray lines) is written to a buffer holding the intermediate
data. Progression along one line is shown to the right.

We base our method on the intuition that points important for AO
are local peaks in the depth field. To track these local peaks, we
find the highest (nearest to the camera) depth field points along the
lines. In practice, we step through each line incrementally and at
each point we sample the depth buffer and deproject the scene point
into eye-space. The maximum height value is then remembered
along the line until B0 steps have been taken. After B0 steps the
maximum height is written into an intermediate geometry buffer
and reset. This is illustrated to the right in Figure 4. The process is
repeated until the end of the depth buffer.

However, which local peak has the highest contribution to AO is
dependent on the angle at which the receiver views the peak. The
maximum height value is guaranteed to represent the highest hori-
zon value for a receiver that is at the same height, i.e. when the
peak is viewed directly horizontally. However, receivers (points
along the line) may reside at various heights and therefore view the
depth field peaks from different angles. Instead of storing the max
height value as viewed directly horizontally, we store 2 max height
values: one as viewed horizontally (mo) and one as viewed at a

36

downwards angle (m1). We call the angles along which the max
height values are viewed receiver angles. This is illustrated to the
left in Figure 5.

m1

m0

m0

m1

m0

m0

m1

m1

h1

h0

Figure 5: The maximum heights (denoted by m0 and m1) as
viewed along 2 receiver angles are written to the intermediate
buffer every B0 = 3 steps. The virtual points (hi) as geometry
used by the obscurance estimator are reconstructed at the intersec-
tion of the corresponding receiver angles positioned at m0 and m1,
as shown to the right.

During the evaluation of the obscurance estimator the intermediate
geometry buffer is read and a virtual point is reconstructed at the
intersection of the receiver angles as shown to the right in Figure
5. Intuitively this virtual point is a view-dependent (for a likely re-
ceiver) approximation of the highest peak within the interval of B0

steps along the scanning line. After culling the invisible points per
receiver, these points can be directly used as hi by the obscurance
estimator in Eqn. 3.

We have chosen to use slopes 0 (horizontal) and -1 (45 degrees
downward) for the receiver angles. We found that the choice for the
receiver angles does not make a large difference to results, however
it is important that there are two different angles such that the recon-
structed virtual point will have both a depth and a distance value.
Algorithm 1 lists the pseudocode for scanning one line in the depth
buffer.

Algorithm 2 lists the pseudocode for evaluating obscurance at one
screen pixel along one azimuthal direction. Since SSAO is sep-
arable in azimuthal directions, Algorithms 1 and 2 can be calcu-
lated sequentially for each K, in which case our method requires
O(W0 ·H0/B0) space for the intermediate geometry buffer, where
W0 and H0 are the depth buffer dimensions including guard bands.
For a typical case of W0 = 1280+256, H0 = 720+144, B0 = 10
this is roughly 1 MB. If the application is not memory constrained
it is faster to evaluate Algorithm 1 for all K simultaneously as to
maximize the number of concurrent threads and therefore improve
utilization of a GPU. For K = 16 the respective memory require-
ment becomes 16.2 MB.

The accuracy of our intermediate geometry becomes progressively
better compared to mipmaps when the interval size increases. Due
to the falloff function occluders far from the receiver get less weight
and also map to smaller swaths of the horizontal angle than nearby
occluders. Therefore it is sensible to construct occluders progres-
sively more sparsely when farther from the receiver. Similarly
to building multiple resolutions of the depth field in the form of
mipmaps, our intermediate geometry can be made into a 1D pyra-
mid. We form levels of the intermediate geometry such that their
intervals increase exponentially from the base level’s, B0. There-
fore the interval of level n is Bn = B0 · 2n. The levels can be effi-
ciently generated by taking the max m0 and m1 from the two cor-
responding lower level intervals. Generating the exponential hier-
archy roughly doubles the required space but reduces the per-pixel
time complexity from O(n) to O(log(n)) where n is the pixel dis-
tance from the receiver to the edge of the depth buffer.

Algorithm 1 ScanLine(float2 pos, float2 dir, int steps, int lineNo)
Pos is the coordinate of the first step in the depth buffer and dir is a
vector for one step along the scanline.

1float m0 = −∞
2float m1 = −∞
3
4while (steps−−)
5{
6float3 p = deProj(sampleDepth(pos), pos)
7// p is projected onto k:th azimuthal plane
8float2 pk = (p.xy · dir, p.z)
9
10m0 = max(m0, pk.y)
11// s = slope of the downwards receiver angle (−1)
12m1 = max(m1, pk.y + s·pk.x)
13
14if (steps modulo B0 == 0)
15{
16// iBuf = the intermediate buffer (output of this stage)
17iBuf[lineNo][steps/B0] = (m0, m1)
18m0 = −∞
19m1 = −∞
20}
21
22pos += dir
23}

Algorithm 2 EvalObscurance(float2 pixelPos, float2 dir)

1int lineNo = find the line with direction dir closest to pixelPos
2int iVal = find the nearest interval in lineNo that is at least B0

steps from pixelPos
3
4float3 p = deProj(sampleDepth(pixelPos), pixelPos)
5// zScale scales z onto the slanted azimuthal plane
6float zScale =

√
1 + (p.x/p.z · dir.y − p.y/p.z · dir.x)2

7float2 pk = (p.xy · dir, p.z·zScale)
8
9float (AO, maxAngle) =

EvalNearField(pixelPos, dir, distance to iVal)
10
11while (iVal ≥ 0) {
12float (m0,m1) = iBuf[lineNo][iVal]
13// s = slope of the downwards receiver angle
14float2 h = ((m0 − m1)/s, m0·zScale)
15float angle = ∠((h − pk),−~pk) // c is at the origin
16if (angle > maxAngle)
17{
18// Obs(ai, ai-1, hi, p) evaluates i:th segment from Eqn. 3
19AO += Obs(angle, maxAngle, h, pk)
20maxAngle = angle
21}
22iVal−−
23}
24
25return AO

37

7 Averaging sectors

In Section 6 we described how to construct virtual points for the
obscurance estimator defined in Section 4 from geometry along a
single line in the depth buffer. We propose this approach when it
is not possible to average or interpolate depth field values, which is
the case in Section 11 where the depth field is assumed to represent
a volume of a finite thickness. In this section we assume that the
depth field is continuous and averaging is thereby allowed.

Ideally the virtual points should represent the entire sector instead
of the thin texel wide line along the center of the azimuthal sec-
tor. The sector’s width increases linearly in the distance from the
receiver as demonstrated in Figure 6. In Figure 6 lines contribut-

B0

B0

B0

p

lBlA
iBuf[li][iV al]

Figure 6: The downward arrows denote scan lines along one az-
imuthal scanning direction. Lines indexed li ∈ [lA, lB] at the high-
lighted interval (constant index iV al) fit into the sector from re-
ceiver p and their m0 and m1 should be averaged.

ing to the obscurance at p are shown as arrows. The horizontal
intervals are equal to the gray lines perpendicular to the scanning
direction previously shown to the left in Figure 4. In order to con-
struct the averaged point for the highlighted middlemost interval
shown in Figure 6, we simply average m0 and m1 over the par-
allel lines lA...lB fitting into the sector at that specific distance:
(ma

0 ,m
a
1) = 1/(lB − lA + 1) · ΣlB

li=lA
iBuf[li][iV al]. When the

virtual point is constructed (line 14 in Algorithm 2) ma
0 and ma

1 are
used instead of m0 and m1. In order to calculate the average in
constant time, we turn the buffer iBuf into a per-interval prefix sum
iBufP such that iBufP [li][iV al] = Σli

l=0iBuf[l][iV al]. From the
prefix sum the average over any line range l0...l1 for interval iV al
can then be efficiently calculated as (iBufP [l1][iV al]− iBufP [l0 −
1][iV al])/(l1 − l0 + 1).

We therefore introduce another stage between Algorithm 1 and 2
which traverses the intermediate geometry buffer iBuf perpendicu-
larly to the scan direction in Algorithm 1 and accumulates m0 and
m1 values over lines. This stage produces the prefix summed ver-
sion iBufP which can, in fact, be built in-place over the original
iBuf.

Finally, when evaluating obscurance, instead of averaging the inter-
vals across the entire sector width, the obscurance can be evaluated
in multiple segments to increase azimuthal resolution. While doing
so does not produce results quite as accurate as if the number of
sectors K is increased by a corresponding factor, evaluating a sec-
tor in multiple segments is computationally lighter than increasing
the number of sectors and has the same effect on reducing banding.
More importantly, evaluation in multiple segments does not require
extra azimuthal scans over the depth buffer. We have chosen to split
each sector in half and evaluate obscurance in 2 segments per sec-
tor. From now on, we denote this by adding a multiplier to K, e.g.
K = 8 × 2 for eight azimuthal directions and two segments.

8 Results

We ran our algorithm on AMD Radeon HD 7970
(OpenCL) and NVIDIA GeForce GTX 580 (CUDA).
Sources are available under the BSD license online at
http://wili.cc/research/ffao/. The mipmap
method using our obscurance estimator and Horizon-Based Am-
bient Occlusion (HBAO) [Bavoil et al. 2008] are implemented as
OpenGL fragment shaders. Performance and quality comparison
between other recent SSAO methods can be found in [Vardis et al.
2013] and [McGuire 2010].

Our algorithm calculates the far-field SSAO in 3 kernels:

1. The Scan kernel scans through the depth buffer in K az-
imuthal scanning directions in parallel lines and finds local
peaks of the depth field at regularly spaced intervals.

2. The Prefix sum kernel reads through the values over multi-
ple lines in a direction perpendicular to the scan direction and
generates prefix sums.

3. The Obscurance kernel reconstructs virtual points from the
prefix sums that are averaged over the azimuthal sector width
at each screen pixel. The final obscurance value per pixel
is calculated by evaluating the obscurance estimator with the
virtual points.

We have chosen two scenes as our main test material. The first
scene is an architectural scene with simple planar geometry (Figure
7, top), and the second scene shows complex geometry and foliage
(Figure 7, bottom). The scenes are rendered using exponentially
decreasing falloff functions whereby in the first scene the falloff
function decays slower than in the second scene. All renderings
use a 10% guard band (extending 10% of the visible framebuffer
width or height at each side) which is denoted by postfixing it to
the resolution in parentheses.

For our method we use K = 8 × 2 and K = 16 × 2 and for the
mipmap method we use K = 16. As reference we use ray trac-
ing on the same geometry (a single-layer depth buffer with a 10%
guard band). In the ray traced result rays with cosine-weighted di-
rections are cast around the hemisphere for each receiver pixel, and
stepped through in small steps until geometry is being intersected.
The intersection distance is then weighted by the falloff function
and accumulated to the result. This can arguably be considered the
best result any method can do with the available screen-space data.

In addition to difference images, we measure the error using two
metrics: eA measures the average per-pixel variation from the ray
traced values and e<5% measures the number of pixels within 5%
of the ray traced values. A high value in e<5% denotes that only
few pixels behave abnormally, which also implies temporal stability
since the reference values do not wave or flicker. In Figure 7 we
have rendered the two scenes using our method and the mipmap
method and compared the results against the ray tracing.

Recall that our obscurance estimator conservatively assumes a
scene point to represent a slab of geometry which extends along
the negative zenith. However, actual depth field geometry between
slabs can be closer to the receiver. The error coming from the over-
estimated distance is relative to the density of the slabs, which we
in this section keep constant at roughly 8 slabs per azimuthal di-
rection. The average error introduced by this in the first scene is
eA ≈ 0.6% and in the second scene eA ≈ 0.8%, which sets a
lower bound for the error as K is increased. Obscurance as esti-
mated from the geometry produced by our method is very accurate
even when a low number of sectors is being used, mainly because
the evaluated virtual scene points are tailored to capture the fea-
tures of the scene geometry that specifically contribute to AO. The

38

Our, K = 8 × 2

error×5

eA = 1.17%, e<5% = 98.9%

Our, K = 16 × 2

error×5

eA = 0.92%, e<5% = 99.8%

Mipmap, K = 16

error×5

eA = 8.63%, e<5% = 25.8%

Ray traced

error×5

eA = 1.92%, e<5% = 93.3%

error×5

eA = 1.27%, e<5% = 98.5%

error×5

eA = 9.90%, e<5% = 38.9%

Figure 7: Two scenes rendered by our method and the mipmap method and their respective error images (white = 0%, black ≥ 20%, brighter
is better), average error (eA, lower is better) and the number of pixels within 5% (e<5%, higher is better) of the ray traced reference.

mipmap method is inadequate in capturing the "profile" of the ge-
ometry within the sample’s radius and produces erroneous results.
Furthermore, the mipmap method converges to the ray traced val-
ues very slowly: It takes over 300 ms to achieve the same level of
error as in our method at K = 8 × 2 and several seconds to match
K = 16 × 2.

While the quantitative error in our method is small, there can still
be banding that is perceptually prominent. The level of banding de-
pends on the geometric content: Bands are cast by sharp tall edges
and are visible on planar surfaces. Averaging the virtual points over
the widths of each sector reduces banding, especially from occlud-
ers far from the receiver where the banding is almost completely
removed. Banding is discussed in more detail in Section 10. Tem-
poral coherence can be a major concern in SSAO methods that ex-
hibit undersampling, whereas the dense azimuthal scans employed
by our method do not skip geometry. Overall we observe that the
results of our method look temporally stable (under motion) which
is to be expected given the small variation with respect to the stable
ray traced values.

In comparison, Figure 8 shows results as rendered by HBAO us-
ing the same falloff function. HBAO does not assume a continuous
depht field. Instead, it assumes that geometry between two con-
secutive visible points along an azimuthal direction is at the same
distance from the receiver as the higher of the two visible points.
As HBAO’s obscurance estimator is not built to converge to Eqn. 1
results look dissimilar to the ray traced reference. HBAO requires

very many samples per pixel to cover far-field effects accurately
which shows up as impractically high render times.

Let W0×H0 be the resolution of the depth buffer with guard bands,
and W × H without. Then the time complexity of our method for
kernel 1 is O(K ·W0 ·H0), for kernel 2 O(K ·W0 ·H0/B0), and
for kernel 3 O(K ·W ·H · log(W0+H0)). We consider the scaling
favorable, as the per-pixel cost increases only logarithmically in the
resolution while the full depth field is still considered for each pixel.

Our method is insensitive to the geometric content of the depth
buffer and the obscurance radius has no effect on the render times;
obscurance is gathered from the entire guard banded depth buffer
for every pixel. Table 1 lists the total execution time of the second
scene in Figure 7 for our method and for the mipmap method using
two different GPUs and two common screen resolutions. All tim-
ings only include far-field AO, which starts at approximately 1.5B0

pixels from the receiver. The same far-field boundary is used for
both methods.

Table 2 shows how the execution time is split between the three
stages of our method. In the Obscurance kernel, we measure the
average number of constructed virtual points to be 7.8 per sector
per pixel. The mipmap method takes an average of 8.5 samples per
sector per pixel.

39

12×48 samples per pixel, 81 ms

error×5

12×32 samples per pixel, 43 ms

error×5

Figure 8: Scenes from Figure 7 as rendered by HBAO on a
GeForce GTX 580 at 1280(+256)×720(+144). Obscurance is cal-
culated in K = 12 azimuthal directions that are randomly rotated
per pixel.

Table 1: Total render times of the far-field AO component.

Method Radeon 7970 GTX 580
1280(+256) × 720(+144), B0 = 10:
Our, K = 8 × 2 7.26 ms 12.0 ms
Our, K = 16 × 2 13.3 ms 23.6 ms
Mipmap, K = 16 19.2 ms 17.7 ms
1920(+384) × 1080(+216), B0 = 10:
Our, K = 8 × 2 16.7 ms 29.4 ms
Our, K = 16 × 2 31.6 ms 58.1 ms
Mipmap, K = 16 31.5 ms 37.9 ms

9 Integration with near-field

From a time complexity point of view our method is effective in
treating near-field obscurance as well, however our method’s ben-
efits become significant only when the geometry enclosed by the
interval Bi covers a large distance. In order to bring the nearest
interval in our method closer to the receiver, B0 has to be reduced,
which increases the execution time and the memory footprint. We
suggest that our method be combined with a lightweight near-field
search that gathers obscurance from an area around the receiver that
is at least a couple of pixels in radius. Where exactly the boundary
between the near-field and our method should be depends on the
characteristics of the near-field search: Our method should gener-
ally take over at a distance where the near-field method is no longer
faster. The interval of the base level, B0, determines the nearest
distance at which our method can take over. Halving B0 causes
one extra interval per sector to be evaluated (roughly a constant in-
crease in execution time), and reduces the area of influence of the
near-field search to quarter. Table 3 lists our method’s execution
times for different values of B0.

When integrating a near-field method with our method, the near-
field method should be executed first and provide the maximum

Table 2: Render time breakdown of our method per kernel.

Phase Radeon 7970 GTX 580
1280(+256) × 720(+144), K = 8 × 2, B0 = 10:
Scan 0.537 ms 0.489 ms
Prefix sum 0.945 ms 0.617 ms
Obscurance 5.77 ms 10.9 ms

Table 3: Far-field render times of our method using different values
for the base level interval B0.

Base level Radeon 7970 GTX 580
1280(+256) × 720(+144), K = 8 × 2:
B0 = 20 6.06 ms 9.77 ms
B0 = 10 7.26 ms 12.0 ms
B0 = 5 8.89 ms 14.7 ms

horizon angles from the near-field range along the K sectors for
each pixel as shown at line 9 in Algorithm 2. After this, our method
continues accumulating the obscurance from the horizon angle up-
wards until the edge of the depth field. We expect B0 ∈ [5, 10] to
be a suitable choice for a typical state-of-the-art near-field search.
Figure 9 shows the contribution of the far-field and the near-field
obscurance components on a 720p depth buffer using B0 = 10.

+

=

Figure 9: The far-field component (≥ 15 px) as produced by our
method and the near-field component (< 15 px) together form the
final ambient obscurance result (bottom).

10 Banding

While the error in our method is small, as established in Section 8,
there still might be some visible banding even though we average
occluders across the width of a sector. In order to gain intuition on
why banding happens, consider the case where an occluder—say,
a wall—enters an otherwise flat sector in a linear motion. If the
sector was split into infinitely many subsectors, obscurance would
increase linearly as the wall occupied a larger swath of the sector.
In our method, the entering wall increases the average height of
an interval linearly, which might not map to linear change in ob-
scurance. This is especially evident for very tall occluders which
cause the obscurance value to increase faster than linearly when
only a small portion of the occluder is occupying the sector. So,
while the obscurance values at band boundaries in our method do
not jump abruptly, they don’t follow the physically correct curve

40

either. In Figure 10 we show a split screen of a scene rendered us-
ing K = 8 × 2 averaged sectors as described in Section 7 and then
using K = 16 straight sampling lines that go through the center
line of each sector. Averaging eliminates far-field banding almost
completely, which is often the hardest to rid, but near-field banding
still persists.

Figure 10: Left: our method using K = 8 × 2 averaged sectors.
Right: our method using K = 16 straight sampling lines.

One solution to the banding problem is to increase the number of
scanning directions K which shows up as a roughly linear increase
in execution times of the Scan and Prefix sum stages. Instead of
evaluating all K sectors for every pixel, it is possible to evaluate the
sectors sparsely. We use the Separable Approximation of Ambient
Occlusion (SAAO) approach from [Huang et al. 2011], and evaluate
K = 18 × 2 sectors in groups of 3 × 3 pixels. Obscurance is
therefore evaluated in an interleaved pattern such that only K =
2 × 2 sectors are evaluated per pixel and the results are gathered
using an edge-aware 3 × 3 box filter as a post-process. Any 3 × 3
pixel neighborhood includes all K = 18 × 2 sectors and therefore
no noise is produced to the image. SAAO produces errors primarily
at edges and depth discontinuities in the depth buffer. While the
far-field AO component can also change by unbounded amounts
between adjacent pixels in the screen, the error is mainly in the
near-field.

We have incorporated SAAO in our method by combining a 3 × 3
separated far-field AO with a full near-field AO. The primary arte-
facts are small integration errors (noise) at the boundary of the far-
field and near-field AO components because they are of different
sparsity. The error can be hidden to a large extent by a selective
blur that uses a small intensity threshold and does not currupt the
image. In Figure 11 a result without blurring is shown to the right,
which shows minor noise, and the image to the left includes a 5×5
bilateral box blur. Figure 1 is also rendered using the method shown
to the left.

Figure 11: Our method using K = 18 × 2 with SAAO. Left:
selectively blurred result. Right: result without blurring.

We implement SAAO by introducing two new kernels:

Box average kernel is an edge-aware filter which averages depth
and the normal vectors from a 3 × 3 pixel neighborhood of
each framebuffer pixel. If the dot product of the normal of the
source pixel and the candidate pixel is higher than 0.5 and the
relative difference of pixel depths is below 3%, the pixel is
accepted into the average. The accepted pixels are the pixels
from which the far-field obscurance is gathered in the Gather
kernel, and therefore a bit mask representing the accepted pix-
els is carried to the Gather kernel. The averaged depth and
normal vectors are used in the Obscurance kernel instead of
the original pixel’s values.

Gather kernel combines the per-pixel near-field obscurance with
an average of the far-field obscurance from pixels that were
marked as accepted in Box average kernel. Results are op-
tionally blurred using a bilateral box filter of size 5 × 5 with
a threshold of 7% (pixels within a maximum of 7% color dif-
ference are included into the average).

The SAAO enabled render times are shown in Table 4. The execu-

Phase Radeon 7970 GTX 580
K = 18 × 2 (3 × 3 separation), B0 = 10,
1280(+256) × 720(+144):
Scan 1.07 ms 1.08 ms
Prefix sum 1.09 ms 1.04 ms
Box average 0.265 ms 0.400 ms
Obscurance, sep. 1.60 ms 3.00 ms
Gather (with blur) 0.255 (0.591) ms 0.290 (0.652) ms
total (with blur) 4.28 (4.62) ms 5.81 (6.17) ms
1920(+384) × 1080(+216):
Scan 2.32 ms 3.08 ms
Prefix sum 2.03 ms 2.08 ms
Box average 0.566 ms 0.894 ms
Obscurance, sep. 3.82 ms 7.25 ms
Gather (with blur) 0.557 (1.31) ms 0.651 (1.46) ms
total (with blur) 9.29 (10.0) ms 14.0 (14.8) ms

Table 4: Render time breakdown of our method per kernel with
SAAO enabled.

tion time of the Obscurance kernel decreases linearly in the num-
ber of evaluated sectors. In fact, the Scan and Prefix sum kernels
now take more time than the Obscurance kernel in some cases, and
speeding up these two kernels would be the logical next step in im-
proving the execution times and is briefly discussed in Section 13.
Overall, SAAO is an efficient way to trade banding for noise or blur
while also improving render times significantly.

11 Limitations of depth buffer geometry

Scene geometry in a depth buffer is incomplete in two ways: (i)
geometry outside the view frustum is unknown and (ii) geometry
below the first depth layer is unknown. The first limitation is usu-
ally addressed by introducing a guard band around the depth buffer.
In this paper we have used a guard band of 10% (extending the
depth buffer by 10% of its width or height in each direction). As
the screen-space radius of the obscurance effect may become arbi-
trarily large when scene geometry is close to the camera, it cannot
be entirely contained within a guard band in any SSAO method.
However, the slower the decay of the falloff function the larger the
guard band generally needs to be and thus becomes important to
our method. Fortunately the Z pre-pass is usually quick and lower
resolution rasterization can be used in the guard bands to further

41

minimize its cost. As long as the Z pre-pass does not have a high
cost, we recommend even larger than 10% guard bands when calcu-
lating far-field AO effects in screen-space. It is also possible to con-
struct a simplified world-space representation of occluders around
the camera that are outside the depth buffer and accumulate SSAO
with occlusion from them using a global AO method, however this
approach is outside the scope of this paper

Most SSAO methods use only a single depth layer and make a
generic assumption about the geometry below the nearest depth
layer. Such an approach can never produce correct results in all
scenes and the artefacts vary. Until this section we have assumed
the depth field to be continuous, i.e. an infinitely thick volume.
This has the benefits, for example, that depth field points can be
averaged and interpolated, and objects appearing behind nearer ge-
ometry within the view frustum will not cause abrupt changes to ob-
scurance. The downside is that obscurance is often overestimated,
and to a large degree if there are thin objects, such as chains hang-
ing in the air, near the camera. Because we in this paper advocate a
high quality and physically correct SSAO, we find more promise in
approaches that attempt to fill the missing scene geometry with real
information of the scene instead of fitting a scene-dependent as-
sumption. In previous work such information has been introduced
in the form of multiple depth layers [Bavoil and Sainz 2009] and
multiple views [Vardis et al. 2013]. Extending our method into that
direction is left as future work.

Instead, we briefly demonstrate our method under the assumption
that the depth field has a fixed finite thickness, an approach taken by
many prior works such as [Loos and Sloan 2010] [McGuire et al.
2011] [McGuire et al. 2012]. While this will not work for arbi-
trary views or scenes that have varied objects, it produces plausi-
ble results when the depth field thickness is carefully selected and
matches that of the viewed objects. Fixing the thickness requires
a small change in the obscurance estimator in Eqn. 3: ai−1 is re-
placed with max(ai−1,∠(hi+ t(hi−c)/||hi −c||−p, ~z)) where
t is the thickness of the depth field.

When the depth field thickness is finite the depth field becomes
discontinuous. Therefore it is not allowed to generate new points
through interpolation or averaging. This limitation does not much
impact direct depth buffer samples which can be snapped to texel
centers as done in [Bavoil et al. 2008]. In our method this means
that averaging across the sector’s width as described in Section 7
cannot be used, however we still retain the advantage over direct
samples that our method tracks the local peaks along each sampling
line. The mipmap method, however, is most impacted: Not only is
interpolation spatially and across mip levels forbidden, but lower
resolution level textures have to reuse values found from the base
level and no averaging is possible. Out of various filters we found
max-mipmaps to produce best results for mipmapping.

In Figure 12 we show the Stanford Dragon as rendered by our ob-
scurance estimator with a fixed depth field thickness using our inter-
mediate geometry samples, direct depth buffer samples, and max-
mipmaps. All methods evaluate roughly 8 far-field samples per az-
imuthal direction. SAAO is not used. Direct depth field samples
and our method produce banding especially since sector averag-
ing cannot be used for mitigation. Therefore our method does not
use the Prefix sum stage and reconstructs scene points as per Al-
gorithm 1 and 2 directly. Our method produces smooth obscurance
along each azimuthal direction whereas direct depth buffer samples
produce artefacts depending on whether the samples hit or miss lo-
cal peaks in the depth field. Due to the missed geometry, direct
sampling also produces systematic underocclusion. Max-mipmaps
do not miss geometry but systematically overestimate it by always
picking the largest occluder within the sample’s radius. Also, as
linear interpolation cannot be used the results are blocky.

11.1 Jittering

It is possible to jitter the sampling directions per-pixel to trade
banding for noise. In our method this can be achieved by adding
or substracting an offset value from the sampled line indices lA and
lB shown in Figure 6. The offset is randomly selected per pixel, and
sampling along every direction is offset by the same amount as not
to cause bias. The offset is scaled according to the distance from
the receiver to the interval. Here, when averaging is not allowed
and only a single line is sampled along each azimuthal direction,
banding becomes especially severe if jittering is not used. Over-
all we find that jittering the sampling direction within the sector
boundaries efficiently eliminates banding in return for some noise.
Our method is the cache-friendliest of the three methods with re-
spect to jittering because neighboring pixels access the same inter-
vals which are laid out in memory consecutively and accesses are
likely to hit the same cache lines. Mipmapping exhibits better cache
locality than the sparser direct samples and its render times are not
impacted significantly by jittering.

12 Conclusion

We have presented a method to solve ambient obscurance in screen-
space from occluders that are beyond the immediate neighborhood
of the receiving pixel. We do this by first scanning the depth buffer
in a number of azimuthal directions while tracking local height
maxima and writing them into an intermediate geometry buffer.
After creating prefix sums of the intermediate geometry buffer, it
can be sampled per-pixel to obtain approximated local peaks in the
environment as seen from the receiver point, at various distances.
These reconstructed scene points are then evaluated using an obscu-
rance estimator to approximate the AO integral over the receiver’s
hemisphere. The obscurance effect in our method is only limited
by the falloff term, and our method can incorporate any such term
without its evaluation affecting render times. Overall our method is
able to produce very high quality AO effects that are close to a ray
traced screen-space reference.

The intended use for our algorithm is to couple it with a lightweight
near-field search to build a robust SSAO solution that accurately
integrates ambient obscurance from the entire guard banded depth
buffer.

13 Future work

Currently we scan the depth buffer densely, which is justifiable
since the Obscurance stage takes most of the execution time and is
not impacted by scanning density. However, a dense scan becomes
costly when SAAO is used as a significant amount of the total time
is spent in the Scan and Prefix sum stages that scale linearly in the
number of scanned lines. It is possible to leave out some of the
parallel lines during azimuthal scans without much impact on the
calculated obscurance because the lines are always approximately
facing the receiver and therefore have a limited contribution to AO.
Ideally, processing every n:th line reduces the execution time of the
Scan and Prefix sum stages by the factor 1/n.

Overall there are four main strategies to reduce the render time of
our method:

• Sparse scans as described above

• Separated obscurance evaluation sparser than 3×3 (which is
used in Section 10), such as 5×5

• Reducing K and increasing the number of segments in which
each sector is evaluated (e.g. K = 8 × 4)

42

Our method

No jittering (16.3 ms) Jittered (19.1 ms)

eA = 1.18%

Direct samples

No jittering (16.8 ms) Jittered (38.8 ms)

eA = 2.12%

Max-mipmaps

No jittering (14.8 ms) Jittered (19.8 ms)

eA = 3.84%

error×5 error×5 error×5

Figure 12: The Stanford Dragon rendered in K = 16 azimuthal directions with a hand-picked thickness t using our intermediate geometry
(left), direct depth buffer samples (middle), and max-mipmaps (right). The right side of each image uses azimuthal directions that are
randomly jittered per-pixel. The resolution is 1280(+256)×720(+144) and the render times are reported for the far-field (B0 = 10) AO
component on a GeForce GTX 580.

• Constructing fewer points (larger intervals) per azimuthal di-
rection per pixel.

We are also investigating the possibility of extending our method
to handle multiple depth layers [Bavoil and Sainz 2009] or mul-
tiple views [Vardis et al. 2013] which—when coupled with suffi-
ciently large guard bands—would alleviate the screen-space prob-
lem of missing scene geometry. This could allow our method to
produce results comparable to global ray tracing.

References

BAVOIL, L., AND SAINZ, M. 2009. Multi-layer dual-resolution
screen-space ambient occlusion. In SIGGRAPH ’09 Talks, ACM.

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08 Talks.

HOANG, T.-D., AND LOW, K.-L. 2012. Efficient screen-space ap-
proach to high-quality multiscale ambient occlusion. The Visual
Computer 28, 3, 289–304.

HUANG, J., BOUBEKEUR, T., RITSCHEL, T., HOLLÄNDER, M.,
AND EISEMANN, E. 2011. Separable approximation of ambient
occlusion. In Eurographics 2011 - Short papers.

LAINE, S., AND KARRAS, T. 2010. Two methods for fast ray-cast
ambient occlusion. CGF: Proceedings of EGSR 2010 29, 4.

LOOS, B. J., AND SLOAN, P.-P. 2010. Volumetric obscurance. In
Proceedings of I3D 2010, ACM.

MCGUIRE, M., OSMAN, B., BUKOWSKI, M., AND HENNESSY,
P. 2011. The alchemy screen-space ambient obscurance algo-
rithm. In Proc. HPG, ACM, HPG ’11, 25–32.

MCGUIRE, M., MARA, M., AND LUEBKE, D. 2012. Scalable
ambient obscurance. In High-Performance Graphics 2012.

MCGUIRE, M. 2010. Ambient occlusion volumes. In Proceedings
of High Performance Graphics 2010.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, 97–121.

REINBOTHE, C., BOUBEKEUR, T., AND ALEXA, M. 2009. Hy-
brid ambient occlusion. EUROGRAPHICS 2009 Areas Papers.

RITSCHEL, T., DACHSBACHER, C., GROSCH, T., AND KAUTZ,
J. 2012. The state of the art in interactive global illumination.
Computer Graphics Forum 31 (Feb.).

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware accelerated
ambient occlusion techniques on gpus. In Proc. I3D ’07, ACM.

SNYDER, J., AND NOWROUZEZAHRAI, D. 2008. Fast soft self-
shadowing on dynamic height fields. Computer Graphics Fo-
rum: Eurographics Symposium on Rendering (June).

TIMONEN, V., AND WESTERHOLM, J. 2010. Scalable Height
Field Self-Shadowing. Computer Graphics Forum (Proceedings
of Eurographics 2010) 29, 2 (May), 723–731.

TIMONEN, V. 2013. Line-Sweep Ambient Obscurance. Computer
Graphics Forum (Proceedings of EGSR 2013) 32, 4.

VARDIS, K., PAPAIOANNOU, G., AND GAITATZES, A. 2013.
Multi-view ambient occlusion with importance sampling. In
Proc. i3D, I3D ’13, 111–118.

ZHUKOV, S., INOES, A., AND KRONIN, G. 1998. An Ambi-
ent Light Illumination Model. In Rendering Techniques ’98,
Springer-Verlag Wien New York, G. Drettakis and N. Max, Eds.,
Eurographics, 45–56.

43

Appendix A

Algorithm listings

A.1 Horizon map computation

ProcessLineP1 outputs, in horizonPoints, the points that cast the highest
horizon at each line point

1 // Operators are C-style
2 float2 getPoint(float2 stepCoord, float2 step)
3 // HF(float2) samples the height field at the given coordinate
4 return (stepCoord · step, HF(stepCoord))
5
6 bool isConvex(float2 p, float2 h0, float2 h1)
7 float2 v1 = h0 − p;
8 float2 v2 = h1 − p;
9 return v1y/v1x < v2y/v2x

10
11 ProcessLineP1(float2 stepCoord, float2 step,

int stepNum, float2 horizonPoints[stepNum])
12 int stepIndex = 0
13 // Handling the two first steps separately
14 stack.push(getPoint(stepCoord, step))
15 horizonPoints[stepIndex++] = NULL // Not defined for the first point
16 stack.push(getPoint(stepCoord += step, step))
17 horizonPoints[stepIndex++] = stack.peek(1)

113

18 while (stepIndex < stepNum)
19 float2 p = getPoint(stepCoord += step, step)
20
21 // peek(n) returns the n:th last element in the stack
22 while (stack.size() ≥ 2 &&

!isConvex(p, stack.peek(1), stack.peek(2)))
23 stack.pop()
24
25 // The last element in the stack is the end point of the horizon
26 horizonPoints[stepIndex++] = stack.peek(1)
27 stack.push(p)

114

A.2 Intervisibility computation

ProcessLineP2 outputs, in horizonPoints, vectors holding the points that
cast the local horizons at each line point

1 correctConvexity(node &child, node &parent, node &root)
2 if (!isConvex(root, parent, child))
3 root.insert(parent, child) // Connect child to root before parent
4 if (child.next() != NULL) // If child has a next sibling
5 parent.firstChild() = child.next()
6 // Step wider in the tree
7 correctConvexity(child.next(), parent, root)
8 else
9 root.disconnect(parent) // Remove the orphaned node

10
11 if (child.firstChild() != NULL)
12 // Step deeper in the tree
13 correctConvexity(child.firstChild(), child, root)
14
15 ProcessLineP2(float2 stepCoord, float2 step,

int stepNum, vector<float2> horizonPoints[stepNum])
16 int stepIndex = 0
17 node first, root
18 // Handling the first two line steps separately
19 first.vertex() = getPoint(stepCoord, step)
20 horizonPoints[stepIndex++] = NULL // No visibility horizons for

the first point
21 root.vertex() = getPoint(stepCoord += step, step)
22 horizonPoints[stepIndex++].insert(first) // Insert() adds to the vector
23
24 root.firstChild() = first
25 bool onConvexPart = isConvex(getPoint(stepCoord−step, step),

getPoint(stepCoord, step), getPoint(stepCoord+step, step))

115

26 while (stepIndex < stepNum)
27 node oldRoot = root // Copy the node
28 root.clearLinkage() // Sets firstChild() and next() to NULL
29 root.vertex() = getPoint(stepCoord += step, step)
30 root.firstChild() = oldRoot // Old root becomes the only child
31
32 correctConvexity(root.firstChild().firstChild(),

root.firstChild(), root)
33
34 // Output the local horizon points
35 for (node horizon = root.firstChild();

horizon != NULL; horizon = horizon.next())
36 horizonPoints[stepIndex].insert(horizon.vertex())
37 stepIndex++
38
39 // Finally checking convexity
40 bool thixConvexity = isConvex(getPoint(stepCoord−step, step),

getPoint(stepCoord, step), getPoint(stepCoord+step, step))
41 if (!onConvexPart && thisConvexity)
42 // Convex part begun, forking the first point as a leaf
43 node leaf
44 leaf.vertex() = getPoint(stepCoord−step, step)
45 root.insert(NULL, leaf)
46
47 onConvexPart = thisConvexity

116

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

Turku

Centre

Computer

Science

for

University of Turku

Department of Information Technology

Department of Mathematics

Åbo Akademi University

Turku School of Economics

Department of Information Technologies

Institute of Information Systems Sciences

!

!

!

!

ISBN 978-952-12-3036-3
ISSN 1239-1883

