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Current methods

Marching several
directions from each
fragment

Sampling several times
along a direction

Optimizations based on
this approach
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Sweeps

We process several (e.g.
64) directions (sweeps)

For a height field of n2

(e.g. 1024x1024) a sweep
consists of n · · ·

√
2n lines

One direction = infinitely
high but thin light source
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Spatial coherence

Each line steps one texel
at a time

Keeps a record of previous
occluders

Line-wise coherence

Convex hull subset of
occluders is enough

3% of occluders required
in practice

Output: occlusion
vector/value on each step

Results for each direction
blended together
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Implications

Previously bandwidth limited

New method samples significantly less

Bound to discrete directions, but ideally takes each pixel on
them into account

Does not map to shaders well ⇒ GPGPU
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Environment

OpenGL 3.0 (Aug 2008)

CUDA 2.2 (May 2009)

Linux (primary), Windows

Software (CPU) and hardware (GPU) implementations
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Tesla architecture

Global (device) memory
on-board, various access
modes

Shared memory on-chip,
for each MP

64kB, 16 banks,
interleaved 32b

30 MPs on GTX280, 8
ALUs on a MP
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OpenGL interoperability

Too much data copying

Not enough threads

We can transfer more sweeps at once to remedy the latter
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Blending in CUDA

Write into multiple dests as before

Blend using CUDA

⇒ still memcpies, sampling slower in CUDA than in
OpenGL
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Sample src PBO with CUDA

Reduces data passed between OpenGL and CUDA

Need to copy src PBO to CudaArray

CUDA provides 2D bilinear filtering (read-only)
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Preblending in CUDA

Cannot write directly,
atomic adds are slow

180◦ rotation is trivial

90◦/270◦ needs shared
mem tricks for mem
coalescing
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Packing texels

CUDA memory coalescing
only works for
thread-consecutive 32b
elements

But we have only single
luminance value for a texel

This calls for bit operations

Heaviest on preblend
kernels, which luckily have
low arithmetic density
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Function of the kernel

Processes one line, reads height values as input

Writes aligned packed values

Keeps a representation of the convex hull

Outputs an occlusion vector

Coalescing vs. length uniformity

Thread block size and shared memory resources
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Occluder processing

Keep a vector of occluders
in shared mem

Search it backwards
(linear/binary)

Use heuristic comparison
operator

Insert new occluder

Remove remaining
(change length indicator)

Return last − current
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Performance figures

Profilers are immature

But we know that we get 50-80 GB/s device memory rates

And 200-400 Gops/s
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Comparison

M$ published previous state-of-the-art method in
Eurographics 2008

It scales badly, 1024x1024 @ 2.5fps, 32 directions

Our method achieves 36-42fps, 64 directions

Is texel-precise on sharp edges
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