Height field ambient occlusion using CUDA

3.6.2009

Outline

@ Introduction

e Method

@ |dea
@ Implementation

e Data management
@ Naive solutions
@ Performance improvements
@ Preblend kernel

@ Occlusion computation
@ Theory
@ Kernel

e Results

Introduction

Height fields

Introduction

Self occlusion

Introduction

Current methods

@ Marching several
directions from each
fragment

@ Sampling several times
along a direction

@ Optimizations based on
this approach

Idea
Implementation

Outline

e Method

@ |dea

Method

Idea
Implementation

@ We process several (e.g.
64) directions (sweeps)

@ For a height field of n?
(e.g. 1024x1024) a sweep
consists of n - --v/2n lines

@ One direction = infinitely
high but thin light source

Spatial coherence

Each line steps one texel
at a time

Keeps a record of previous
occluders

Line-wise coherence

Convex hull subset of
occluders is enough

3% of occluders required
in practice

Output: occlusion
vector/value on each step

Results for each direction
blended together

Idea
Implementation

Method T

Implementation

Implications

@ Previously bandwidth limited
@ New method samples significantly less

@ Bound to discrete directions, but ideally takes each pixel on
them into account

@ Does not map to shaders well = GPGPU

Idea
Implementation

Outline

9 Method

@ Implementation

Method
Idea

Implementation

Environment

@ OpenGL 3.0 (Aug 2008)

@ CUDA 2.2 (May 2009)

@ Linux (primary), Windows

@ Software (CPU) and hardware (GPU) implementations

Idea
Implementation

Tesla architecture

Device
Multiprocessor N
@ Global (device) memory 8
. | Multiprocessor 2
on-board, various access R

modes

@ Shared memory on-chip,
for each MP

@ 64kB, 16 banks,
interleaved 32b

® 30 MPs on GTX280, 8
ALUs on a MP

Naive solutions
Data management Performance improvements
Preblend kernel

Outline

e Data management
@ Naive solutions

Naive solutions
Data management Performance improvements
Preblend kernel

OpenGL interoperability

Texture OpenGL CUDA

.
RBO

h N
dest src dest src
PBO PBO PBO PBO
W COMPUTATION
dest src dest src
PBO PBO PBO PBO

s
@,

Naive solutions
Data management Performance improvements
Preblend kernel

OpenGL interoperability

@ Too much data copying
@ Not enough threads
@ We can transfer more sweeps at once to remedy the latter

Naive solutions
Data management Performance improvements
Preblend kernel

Blending in CUDA

@ Write into multiple dests as before
@ Blend using CUDA

@ = still memcpies, sampling slower in CUDA than in
OpenGL

Naive solutions
Data management Performance improvements
Preblend kernel

Outline

e Data management

@ Performance improvements

Naive solutions
Data management Performance improvements
Preblend kernel

Sample src PBO with CUDA

@ Reduces data passed between OpenGL and CUDA
@ Need to copy src PBO to CudaArray
@ CUDA provides 2D bilinear filtering (read-only)

Naive solutions
Data management Performance improvements
Preblend kernel

Preblending in CUDA

@ Cannot write directly,
atomic adds are slow
@ 180° rotation is trivial

@ 90°/270° needs shared
mem tricks for mem
coalescing

by (3

Naive solutions
Data management Performance improvements
Preblend kernel

Packing texels

00 61 02 0310 11 12 13|
_ 04 05 06 07,14 15 16 17
@ CUDA memory coalescing 08 09 18 19

only works for
thread-consecutive 32b

elements +
00 01 02 03|04 05 06 07|08 09
@ But we have only single 10 11 12 1314 15 16 17|18 189

. 20 21 22 23|24 25 26 27|28 29
luminance value for a texel

@ This calls for bit operations

@ Heaviest on preblend -

: : 00 10 20 30[40 50 60 70|80
kernel§, Whl(.:h Iuckl!y have ol 11 21 3141 51 61 7181
low arithmetic density 02 12 22 32|42 52 62 72|82

03 13 23 33|43 53 63 73|83

Naive solutions
Data management Performance improvements
Preblend kernel

Outline

e Data management

@ Preblend kernel

Theory

. . Kernel
Occlusion computation

Outline

@ Occlusion computation
@ Theory

Theory

. . Kernel
Occlusion computation

Function of the kernel

Processes one line, reads height values as input
Writes aligned packed values

Keeps a representation of the convex hull
Outputs an occlusion vector

Coalescing vs. length uniformity

Thread block size and shared memory resources

Theory
Kernel

Occlusion computation

Occluder processing

@ Keep a vector of occluders
in shared mem

@ Search it backwards
(linear/binary)

@ Use heuristic comparison
operator

@ Insert new occluder

@ Remove remaining
(change length indicator)

@ Return last — current

Theory

) . Kernel
Occlusion computation

Outline

@ Occlusion computation

@ Kernel

Results

Performance figures

@ Profilers are immature
@ But we know that we get 50-80 GB/s device memory rates
@ And 200-400 Gops/s

Results

Comparison

@ MS$ published previous state-of-the-art method in
Eurographics 2008

@ It scales badly, 1024x1024 @ 2.5fps, 32 directions
@ Our method achieves 36-42fps, 64 directions
@ |s texel-precise on sharp edges

Screen captures

oxcmli[;m n
EBEEE Eﬁaﬂi

	Introduction
	Method
	Idea
	Implementation

	Data management
	Naive solutions
	Performance improvements
	Preblend kernel

	Occlusion computation
	Theory
	Kernel

	Results

