
Introduction
Method

Data management
Occlusion computation

Results

Height field ambient occlusion using CUDA

3.6.2009



Introduction
Method

Data management
Occlusion computation

Results

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Height fields



Introduction
Method

Data management
Occlusion computation

Results

Self occlusion



Introduction
Method

Data management
Occlusion computation

Results

Current methods

Marching several
directions from each
fragment

Sampling several times
along a direction

Optimizations based on
this approach



Introduction
Method

Data management
Occlusion computation

Results

Idea
Implementation

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Idea
Implementation

Sweeps

We process several (e.g.
64) directions (sweeps)

For a height field of n2

(e.g. 1024x1024) a sweep
consists of n · · ·

√
2n lines

One direction = infinitely
high but thin light source



Introduction
Method

Data management
Occlusion computation

Results

Idea
Implementation

Spatial coherence

Each line steps one texel
at a time

Keeps a record of previous
occluders

Line-wise coherence

Convex hull subset of
occluders is enough

3% of occluders required
in practice

Output: occlusion
vector/value on each step

Results for each direction
blended together



Introduction
Method

Data management
Occlusion computation

Results

Idea
Implementation

Implications

Previously bandwidth limited

New method samples significantly less

Bound to discrete directions, but ideally takes each pixel on
them into account

Does not map to shaders well ⇒ GPGPU



Introduction
Method

Data management
Occlusion computation

Results

Idea
Implementation

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Idea
Implementation

Environment

OpenGL 3.0 (Aug 2008)

CUDA 2.2 (May 2009)

Linux (primary), Windows

Software (CPU) and hardware (GPU) implementations



Introduction
Method

Data management
Occlusion computation

Results

Idea
Implementation

Tesla architecture

Global (device) memory
on-board, various access
modes

Shared memory on-chip,
for each MP

64kB, 16 banks,
interleaved 32b

30 MPs on GTX280, 8
ALUs on a MP



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

OpenGL interoperability



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

OpenGL interoperability

Too much data copying

Not enough threads

We can transfer more sweeps at once to remedy the latter



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

Blending in CUDA

Write into multiple dests as before

Blend using CUDA

⇒ still memcpies, sampling slower in CUDA than in
OpenGL



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

Sample src PBO with CUDA

Reduces data passed between OpenGL and CUDA

Need to copy src PBO to CudaArray

CUDA provides 2D bilinear filtering (read-only)



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

Preblending in CUDA

Cannot write directly,
atomic adds are slow

180◦ rotation is trivial

90◦/270◦ needs shared
mem tricks for mem
coalescing



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

Packing texels

CUDA memory coalescing
only works for
thread-consecutive 32b
elements

But we have only single
luminance value for a texel

This calls for bit operations

Heaviest on preblend
kernels, which luckily have
low arithmetic density



Introduction
Method

Data management
Occlusion computation

Results

Naive solutions
Performance improvements
Preblend kernel

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Theory
Kernel

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Theory
Kernel

Function of the kernel

Processes one line, reads height values as input

Writes aligned packed values

Keeps a representation of the convex hull

Outputs an occlusion vector

Coalescing vs. length uniformity

Thread block size and shared memory resources



Introduction
Method

Data management
Occlusion computation

Results

Theory
Kernel

Occluder processing

Keep a vector of occluders
in shared mem

Search it backwards
(linear/binary)

Use heuristic comparison
operator

Insert new occluder

Remove remaining
(change length indicator)

Return last − current



Introduction
Method

Data management
Occlusion computation

Results

Theory
Kernel

Outline

1 Introduction

2 Method
Idea
Implementation

3 Data management
Naive solutions
Performance improvements
Preblend kernel

4 Occlusion computation
Theory
Kernel

5 Results



Introduction
Method

Data management
Occlusion computation

Results

Performance figures

Profilers are immature

But we know that we get 50-80 GB/s device memory rates

And 200-400 Gops/s



Introduction
Method

Data management
Occlusion computation

Results

Comparison

M$ published previous state-of-the-art method in
Eurographics 2008

It scales badly, 1024x1024 @ 2.5fps, 32 directions

Our method achieves 36-42fps, 64 directions

Is texel-precise on sharp edges



Introduction
Method

Data management
Occlusion computation

Results

Screen captures


	Introduction
	Method
	Idea
	Implementation

	Data management
	Naive solutions
	Performance improvements
	Preblend kernel

	Occlusion computation
	Theory
	Kernel

	Results

