Multi-Scale Global Illumination in Quantum Break

Ari Silvennoinen

Remedy Entertainment Aalto University

SIGGRAPH 2015: Advances in Real-Time Rendering course

Ville Timonen

Remedy Entertainment

Remedy Entertainment

northlight®

Custom in-house engine Physically based light pre-pass renderer

Design Goals and Constraints

Consistency

Design Goals and Constraints

Consistency

Semi-dynamic environments and lighting

Design Goals and Constraints

Consistency Semi-dynamic environments and lighting Fully automatic

Screen-Space Lighting

Screen-Space Lighting

Screen-Space Lighting

100 C

Large Scale Lighting

Multi-Scale Lighting

Talk Outline

Part I: Large-scale lighting

Part II: Screen-space lighting

Talk Outline

Part I: Large-scale lighting

Part II: Screen-space lighting

Dynamic Approaches

- Virtual Point Lights (VPLs) [Keller97]
- Light Propagation Volumes [Kaplaynan10]
- Voxel Cone Tracing [Crassin11]
- Distance Field Tracing [Wright15]

Dynamic Approaches — Virtual Point, ights (VPLs) [Keller97] Light Propagation Volumes [Kaplaynan10]

- Voxel Corie Tracing [Crassin11]

- Distance Field Tracing [Wright15]

Cost was too high for the **quality** we wanted

Mesh-based Precomputation

- Precomputed Radiance Transfer (PRT) [Sloan02]
- Spherical Harmonic Light Maps

Meshless Precomputation

Irradiance Volumes [Greger98]

Mesh-based Precomputation

- Precomputed Radiance Transfer (PRT) [Sloan02]
- Spherical Harmonic Light Maps

Meshless Precomputation

Irradiance Volumes [Greger98]

[Greger 1998]

[Greger 1998]

۲ ۰, ۲ • ø e *'

[Greger 1998]

Per-pixel lookup

[Greger 1998]

Global Illumination Volumes

-----Augment irradiance volumes with global illumination data

E. Mar

_ighting Onl

-

шн (

1111

Indirect Sun Light Transport

Local Irradiance

(F)

Sky Light Transport

SIGGRAPH 2015: Advances in Real-Tin

1

Lighting Only

Indirect Sun Light Transport

ALC: NO

шн (

1111

Local Irradiance

(F)

Sky Light Transport

SIGGRAPH 2015: Advances in Real-Tin

1

_ighting Onl

-

шн (

1111

Indirect Sun Light Transport

Local Irradiance

F

Sky Light Transport

1

_ighting Onl

Indirect Sun Light Transport

ALC: NO

шн (

1111

Local Irradiance

(F)

Sky Light Transport

SIGGRAPH 2015: Advances in Real-Tin

1

Global Illumination Volumes

No UVs Vorks for LOD models Volumetric lighting Consistent with dynamic objects

Global Illumination Volumes

No UVs Vorks for LOD models Volumetric lighting Consistent with dynamic objects

Specular **infeasible** due to data size

Specular Reflections

Specular Reflections

Specular Reflections

How to Blend Reflection Probes?

Main idea: extend global illumination volumes to store reflection probe visibility

Main idea: extend global illumination volumes to store reflection probe visibility

Main idea: extend global illumination volumes to store reflection probe visibility

Main idea: extend global illumination volumes to store reflection probe visibility V....

Main idea: extend global illumination volumes to store reflection probe visibility

Main idea: extend global illumination volumes to store reflection probe visibility

Store best reflection probes in the voxel

Reflection Probes

Reflection Probes

Where to Place Reflection Probes?

Not too close to geometry

Where to Place Reflection Probes?

Not too far from geometry

Observation

Maximise visible surface area Minimize distance to surface

SIGGRAPH 2015: Advances in Real-Time Rendering course

Automatic Probe Placement

Maximise visible surface area Minimize distance to surface

Automatic Probe Placement

Maximise visible surface area Minimize **distance** to surface

Choose K best probe locations

Probe Placement

1

SIGGRAPH 2015: Advances in Real-Time Rendering course

212

Global Illumination Data

Local Irradiance

Specular Probe Visibility

Global Illumination Data

Local Irradiance

Indirect Sun Light Transport Sky Light Transport

Related Work

GPU Volume Textures

Can't use native interpolation due to compression

GPU Sparse Textures

- Too large pages for fine grained tree structure
- May not be available on target platforms for future games

Related Work

Adaptive Volumetric Data Structures

- Irradiance Volumes [Greger98, Tatarchuk05]
- GigaVoxels [Crassin09]
- Sparse Voxel Octrees [Laine and Karras 2010]
- Tetrahedralization, e.g., [Cupisz12], [Bentley14], [Valient14]
- Sparse Voxel DAGs [Kämpe13]
- Open VDB [Museth13]

SIGGRAPH 2015: Advances in Real-Time Rendering course
Implicit spatial partitioning Branching factor of 64 Multi-scale data

Voxel Tree Structure

Node Structure

Child Mask

Node Structure

Child Mask

Node Structure

Node Structure

Voxel Grid

Child Index =

Node Structure 7 Child Mask 64 bits **Child Block Offset** 1 bit Terminal Node Bit 31 bits **Child Block Offset** +

Node Structure

Node Structure

Payload Data

Node Structure

Payload Data

Patrice -		

What About Leaf Nodes?

Leaf nodes are **implicit**: they only show up in the child masks of their parent voxels

Compact trees encoding only the topology

Only a few hundred kilobytes for an entire level

First Level Lookup

First level of the tree can have arbitrary dimensions

We use a **dense** grid of 8x8x8 meter cells to guarantee coverage for large dynamic objects

Voxel Tree Visualisation

50 cm

Dynamic and static objects lit by **same** data Need **seamless** interpolation everywhere

Query point in empty leaf

Apply partial dilation to avoid recursion

(a)

1 10000 10

1 8000 4

0.5m voxels2m voxels8m voxels

1 10000 10

Geometry Weights

Multiply trilinear weight with $max(0, \cos \theta)$

Scaling to Large Scenes

World is divided into a **cell grid** for streaming

Per cell voxel tree

World Atlas

Scaling to Large Scenes

Linear GPU arrays

World Atlas

Global Illumination

-A

STATISTICS AND ADDRESS OF

Screen Space + Ambient

1

C.P.P.

- And a state

Global Illumination

Screen-Space + Ambient

THE REAL PROPERTY.

Global Illumination

Screen-Space + Ambient

......

THE REAL PROPERTY.

Performance

Each world cell has max 65K diffuse GI data points Comparable to **256x256** light map

Performance

Use reflector lights to avoid dynamic fill lights

Local Irradiance

Direct Only

Reference Indirect

Global Illumination

Real-Time Indirect

Volumetric Global Illumination

Global Illumination

Constant Ambient

Global Illumination

Constant Ambient

Summary

Unified approach to large scale lighting Fully automatic specular probe system

Talk Outline

Part I: Large-scale lighting

Part II: Screen space lighting

Screen-Space Techniques

Requirements

- Occlude larger scale lighting
- Fill in with screen-space sampled lighting

Screen-Space Ambient Occlusion and Diffuse

GI diffuse occlusion

Screen-Space Diffuse

Based on Line-Sweep Ambient Obscurance [Timonen2013]: LSAO locates most contributing occluders

sweep direction

We scan in 36 directions, long steps (~10px) and short line spacing (~2px apart)

 Scheduling friendly for the GPU - Scan is 0.75ms on Xbox One at 720p

regular

jittered

 An additional near field sample (at ~2px distance) Sample normal to clamp occluders

36 directions too expensive to gather per pixel

- Interleave on a 3x3 neighborhood (4 dirs/pixel) - Gather using a depth and normal aware 3x3 box filter

Screen-Space Ambient Occlusion - 1.4ms @ 720p on XB1

1mmm

- dille

- Section

X

Į.

122

¥

A CONTRACTOR OF

KTZ TTTTT

Single frame 36 dirs

Temporal 4x36 dirs

Screen-Space Diffuse Lighting

Screen-Space Diffuse Lighting

- LSAO samples are "the most visible"
- Good candidates to sample incident light Can't be occluded by definition (providing self-occlusion)

Screen-Space Diffuse — 0.45ms

Final image

ERPORT S

Screen-Space Ambient Occlusion OFF Screen-Space Diffuse Lighting OFF

Screen-Space Ambient Occlusion ON Screen-Space Diffuse Lighting OFF

Screen-Space Ambient Occlusion ON Screen-Space Diffuse Lighting ON

Screen-Space Ambient Occlusion OFF Screen-Space Diffuse Lighting OFF

SIGGRAPH 2015: Advances in Real-Time

Screen-Space Ambient Occlusion ON Screen-Space Diffuse Lighting OFF

SIGGRAPH 2015: Advances in Real-Time

Screen-Space Ambient Occlusion ON Screen-Space Diffuse Lighting ON

Screen-Space Ambient Occlusion OFF Screen-Space Diffuse Lighting OFF

1000 1000 1000 I

Screen-Space Ambient Occlusion ON Screen-Space Diffuse Lighting OFF

Screen-Space Ambient Occlusion ON Screen-Space Diffuse Lighting ON

Screen-Space Reflections and Occlusion

GI specular occlusion

法法

Screen-Space Specular

1 ray per pixel from GGX distribution, evaluated for all surfaces

- Linear search (7 steps)
- Step distances form a geometric series

Treating the depth buffer samples

Need to support varying roughness - Calculate cone coverage

Need to suit both occlusion and color sampling Also find a single color sample location

Depth thickness = a + b*(distance along the ray)

Depth field extends to/from camera, not along view z!

Match the linear term to step size in view space. Otherwise holes on solid geometry:

For occlusion, calculate max coverage of the cone

Clamp the cone's lower bound to surface tangent!

Screen-Space Reflection Occlusion - 0.8 ms @ 720p on XB1

annannannannann

For **color**, we need a single sample location

First, we pick the sample that covered most of the cone

Aim the reflection ray towards the center of the coverage

And intersect with the line between the last 2 samples

Low sample density: interpolate towards camera direction (in blue)

Previous sample above ray: don't interpolate

Screen-Space Reflections — 0.5 ms @ 720p on XB1

Final image

ⅆℿℿ

Screen-Space Reflection Occlusion OFF Screen-Space Reflections OFF

SIGGRAPH 2015: Advances in Real-Time Rendering course

Screen-Space Reflection Occlusion ON Screen-Space Reflections OFF

Screen-Space Reflection Occlusion ON Screen-Space Reflections ON

Refining the intersections

If neighboring rays have the same direction

- Interleave search
- Take nearest hit distance

Independent rays

Thank You!

Acknowledgments Tatu Aalto Janne Pulkkinen Laurent Harduin Natalya Tatarchuk Jaakko Lehtinen

References

[Keller97] http://dl.acm.org/citation.cfm?id=258769 [Greger98] http://www.cs.utah.edu/~shirley/papers/irradiance.pdf [Sloan02] http://www.cs.jhu.edu/~misha/ReadingSeminar/Papers/Sloan02.pdf Tatarchuk05] http://developer.amd.com/wordpress/media/2012/10/Tatarchuk Irradiance Volumes.pdf [Crassin09] http://gigavoxels.inrialpes.fr [Kaplaynan10] http://dl.acm.org/citation.cfm?id=1730804.1730821&coll=DL&dl=GUIDE&CFID=706369976&CFTOKEN=50004308 Laine and Karras10] https://mediatech.aalto.fi/~samuli/ [Crassin11] http://dl.acm.org/citation.cfm?id=1944745.1944787&coll=DL&dl=GUIDE&CFID=706369976&CFTOKEN=50004308 [Cupisz12] http://twvideo01.ubm-us.net/o1/vault/gdc2012/slides/Programming%20Track/ Cupisz_Robert_Light_Probe_Interpolation.pdf [Kämpe13] http://www.cse.chalmers.se/~kampe/highResolutionSparseVoxeIDAGs.pdf [Museth2013] http://www.openvdb.org [Timonen2013] http://wili.cc/research/lsao/ [Bentley14] http://suckerpunch.playstation.com/images/stories/GDC14_infamous_second_son_engine_postmortem.pdf [Valient14] http://www.guerrilla-games.com/publications.html [Wright15] http://advances.realtimerendering.com/s2015/index.html

